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The standardized uptake value is commonly used as a tool to
supplement visual interpretation and to quantify the images ac-
quired from static in vivo animal PET. The preferred approach
for analyzing PET data is either to sum the images and calculate
the standardized uptake value or to use kinetic modeling. The
aim of this study was to investigate the performance of masked
volumewise principal-component analysis (MVW-PCA) used in
dynamic in vivo animal PET studies to extract and separate sig-
nals with different kinetic behaviors. Methods: PET data were
acquired with a small-animal PET scanner and a fluorine tracer
in a study of rats and mice. After acquisition, the data were recon-
structed by use of 4 time protocols with different frame lengths.
Data were analyzed by use of MVW-PCA with applied noise pre-
normalization and a new masking technique developed in this
study. Results: The resulting principal-component images
showed a clear separation of the activity in the spine into the first
MVW-PCA component and the activity in the kidneys into the
second MVW-PCA component. In addition, the different time
protocols were shown to have little or no impact on the results
obtained with MVW-PCA. Conclusion: MVW-PCA can effi-
ciently separate different kinetic behaviors into different prin-
cipal-component images. Moreover, MVW-PCA is a stable
technique in the sense that the time protocol chosen has only
a small impact on the resulting principal-component images.
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PET is a noninvasive imaging modality that is used to
visualize the concentration of a molecule labeled with
a radioactive isotope called a tracer, representing the
physiologic interaction between the administered tracer and
the target of interest, in the scanned object. PET studies are
performed either dynamically or statically. Static PET

studies are often used in clinical applications such as
oncology and neurology with already well-known tracers,
such as 18F-FDG. Dynamic PET studies are often used in
clinical applications such as neurology, cardiology, and
oncology to explore the kinetic behavior of an administered
tracer in the scanned object and to study the treatment effect.

In contrast to static imaging, dynamic PET studies depict
the same volume within the scanned object but at different
time points during the study, suggesting the possibility of
exploring the physiologic interactions of the administered
tracer in the scanned object as a function of time.
Furthermore, dynamic PET studies can be used to explore
the kinetic behaviors of new tracers or existing tracers in
new applications (1).

However, independent of the type of study performed,
PET data often have high levels of noise, which make it
difficult to discern different areas in image volumes. A
standard method for reducing noise and improving quali-
tative and quantitative estimation is to sum or average
image volumes within a chosen time interval. The summa-
tion is usually performed over parts of the sequence in
which the signal is proportionally higher. Furthermore, the
signal often has a higher amplitude in the beginning of
a scan, when the tracer has not yet bound to the target. This
means that the signal in acquired image volumes is based
on flow rather than binding, which is not the desired result.
It is possible to improve the results by summing image
volumes within later time frames of the scan; however, the
level of noise will increase significantly, leading to a loss of
quantitative information, especially when 11C-labeled
tracers with a half-life of 20 min are used (2).

The level of noise in a PET dataset considerably affects
the accuracy of quantitative results, especially with kinetic
modeling methods, in which noise causes large uncertainty
in the parameters used as the modeling assumptions.
Because the parameters used in kinetic modeling are partly
determined by the properties within a reference region,
modeling methods are dependent on either accurate blood
sampling or an appropriate choice of a reference region to
be used as an input function. The aim of kinetic modeling is
to increase differences between healthy and pathologic
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regions. One of the most well-known kinetic modeling
methods is the so-called reference Patlak method (3).
However, the reference Patlak method applied to an image
domain does not consider optimization of the signal-to-
noise ratio, and the parametric images that are obtained
have high levels of noise. Wang et al. showed that the
signal-to-noise ratio in parametric images could be im-
proved by applying the Patlak method to a sinogram
domain (4). Some other kinetic modeling methods are
Logan plots (5), compartment modeling, factor analysis,
and spectral analysis (6). Common to all kinetic modeling
methods is low quality, especially when the data used are
noisy or when the reference region contains any specific or
nonspecific binding.

A recently introduced method, masked volumewise
principal-component analysis (MVW-PCA), can be used
to analyze data without making any modeling assumptions.
Although quantitative information is lost when separate
principal components are evaluated with this method, the
diagnostic value of the resulting image is often better than
that obtained with the other methods mentioned (1,2).
MVW-PCA has the ability to extract and separate un-
correlated signals representing different kinetic behaviors
of the administered tracer. Consequently, the image vol-
umes resulting from MVW-PCA are well suited for
drawing regions of interest to be used as reference regions
(7) or for creating time–activity curves (8).

Both static and dynamic PET data are usually stored in
sinograms (9). In a static study, each slice in the scanned
object is represented by a sinogram. In a dynamic study,
every slice is represented by a set of sinograms, one for
each time interval or frame. The sinograms contain in-
formation about the number of counts made by a detector
pair, but the temporal resolution is limited to the frame to
which the counts belong. The sinograms are reconstructed
into images by use of a reconstruction algorithm. A
drawback of the sinogram storing method is that the time
protocol must be chosen before the data acquisition begins
and cannot be changed after the scan. The list-mode (10)
data storing option available in some newer PET cameras
offers the opportunity to change dynamic time protocols
after the PET scan. In the list mode, all detections made by

the PET camera during the scan are stored in a list
containing information about which detector has detected
a photon and a time stamp with the precise time of the
detection. This information makes it possible to construct
sinograms after the acquisition is completed with any
desired time protocol. This feature is important for the
evaluation of multivariate image analysis methods for PET
data because it is important for the methods used to be
stable with respect to the choice of a time protocol. Without
the list-mode storing option, it is difficult to analyze the
effects of different time protocols with multivariate analysis
methods because the same acquisition data are available
only with one time protocol.

In the present study, the effects of using datasets with
different time protocols as inputs to MVW-PCA were

FIGURE 1. Step-by-step masking of PET series created in
small-animal PET study of rat with 18F tracer. Results shown
were obtained after masking steps for slice 30 of 61.

FIGURE 2. Slice 31 of 61 from MVW-
PC1 images of mouse data. Time pro-
tocols had frame lengths of 1 min (A and
E), 2 min (B and F), 5 min (C and G), and
10 min (D and H). Spine is clearly visible
in upper portions of images. There are no
visible differences among time proto-
cols. (A color version of this figure is
available as a supplemental file online at
http://tech.snmjournals.org.)
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studied with list-mode PET acquisition data from in vivo
animal studies performed with a fluorine tracer. The aim of
the study was to evaluate the performance of MVW-PCA in
terms of signal extraction and separation as well as image
quality with different time protocols in the input dataset.

MATERIALS AND METHODS

Data Acquisition
The animal study was performed with an eXplore VISTA dual-

ring small-animal PET scanner (GE Healthcare). The unit contains
2 rings of Phoswich detector modules capable of performing
3-dimensional data acquisition with an axial field of view of 48
mm and an effective transaxial field of view of 67 mm. The spatial
resolution for reconstructions made with 3-dimensional ordered-
subset expectation maximization (OSEM) is 0.8–1.0 mm, and that
when images are reconstructed with filtered backprojection (FBP)
is 1.5–1.8 mm (11). Each time frame consisted of 61 transaxial
slices with an image resolution of 175 · 175.

The data acquisition was performed dynamically with the list
mode so that we could divide the dataset with various time
protocols before reconstruction with either iterative or analytic
approaches. The time protocols for the 30-frame, 15-frame,

6-frame, and 3-frame datasets were 30 · 1 min, 15 · 2 min, 6 ·
5 min, and 3 · 10 min, respectively.

Animal Studies
Studies were performed on 4 C57 mice and 10 Sprague–

Dawley rats. All animal studies were approved by the local ethics
committee and performed in conjunction with the Guide for the
Care and Use of Laboratory Animals (12).

Under anesthesia, an animal was placed in the prone position in
the scanner gantry, and 18F-fluoride (;10 MBq) was injected via
the tail vein. This study was performed to explore possible
mineralization in soft tissues when animals were treated with
a substance of interest (an ongoing project). Image acquisition and
radiotracer injection were started simultaneously, and a whole-
body dynamic sequence (14 frames: 4 · 30 s, 4 · 60 s, 2 · 120 s,
2 · 300 s, and 2 · 1,200 s) was acquired over 120 min.

PCA
PCA is an unsupervised method that linearly transforms a given

set of multivariate variables to a new set of variables. The trans-
formation matrix is chosen in such a way that base vectors lie in the
direction of maximum variance among all possible linear combi-
nations of the variables in the multivariate dataset. The resulting

FIGURE 3. Weight factors for MVW-PC1 images of mouse data. (Left) Weight factors for FBP-reconstructed images. (Right)
Weight factors for OSEM-reconstructed images. In both cases, MVW-PC1 is close to mean image.

FIGURE 4. Slice 31 of 61 from MVW-
PC1 images of data acquired in rat study.
Time protocols had frame lengths of 1
min (A and E), 2 min (B and F), 5 min (C
and G), and 10 min (D and H). Spine is
clearly visible in upper portions of im-
ages. Kidneys are visible in left and right
portions of images. There are almost no
visible differences among time protocols.
(A color version of this figure is available
as a supplemental file online at http://
tech.snmjournals.org.)
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variables yield maximum variance among all possible linear
combinations of the dataset under the constraint that they should
be orthogonal to all of the previously chosen variables.

Because PCA cannot separate variance due to a signal from
variance due to noise, prenormalization must be applied before
PCA. Prenormalization transforms the dataset to a new dataset
from which the signal can be extracted more easily. The noise in
raw PET data is usually considered to have a Poisson distribution,
but after reconstruction of image sequences from raw data by
a method such as FBP, the noise can be considered to have an
approximate gaussian distribution. The prenormalization method
(background noise prenormalization) was performed by dividing
the value of each pixel in the image by the standard deviation of
the background in the image. Because the background pixel values
in the OSEM-reconstructed image were 0, they could not be used
to estimate the noise in the image. Instead, a new approach (an
ongoing project), high-order principal-component analysis, was
used. This approach is based on an estimation of the noise with
information obtained from higher-order principal components.

MVW-PCA
In MVW-PCA, which was developed by Razifar et al. (1,13),

the entire dynamic image volume is used as input data for PCA.

To avoid inconsistencies among different slices of the object, the
entire volume is treated as one observation. This approach is
logical because the scanned object is not built up in slices.
Moreover, the results of PCA should depend on image data from
the scanned object and not the volume around the object;
therefore, the object is masked and extracted. Masking can be
done with transmission or CT data if such data are available.

Because no CT or attenuation data were available, an automatic
masking technique was developed. Masking of the reconstructed
PET data was performed by first summing all of the frames. After
summation was performed, a threshold at the mean value in the
slice was used to create an initial separation of the object from
the background. However, because of the high level of noise in the
reconstructed PET data, especially when the images were recon-
structed with FBP, several steps were needed to create a high-
quality mask. First, the holes were filled with morphologic
operations. Next, a standard image opening was performed with
erosion and dilation of the image. A scanned object often is
approximately symmetric in the vertical direction (x-direction),
but tracer binding is sometimes not symmetric, yielding a non-
symmetric mask. To correct this problem, the mask can be made
symmetric by adding the mask to a mirrored version of itself. The
result of these operations often is a jagged mask. Filtering with

FIGURE 5. Weight factors for MVW-PC1 images of rat data. (Left) Weight factors for FBP-reconstructed images. (Right) Weight
factors for OSEM-reconstructed images. In both cases, MVW-PC1 assigns higher weights to later frames, which typically contain
less noise than earlier frames.

FIGURE 6. Slice 31 of 61 from MVW-
PC2 images of data acquired in mouse
study. Time protocols had frame lengths
of 1 min (A and E), 2 min (B and F), 5 min
(C and G), and 10 min (D and H). Kidneys
and urinary tract are clearly visible in
images. Differences among time pro-
tocols are slight, especially for compar-
ison of spine in upper portions of A and
D. Spine in G has slightly higher ampli-
tude than spine in E, F, and H. (A color
version of this figure is available as
a supplemental file online at http://
tech.snmjournals.org.)
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a large mean filter and applying a threshold reduce this problem.
The threshold level can be varied to provide higher or lower
sensitivity to small details. Furthermore, there are often inconsis-
tencies between slices. This problem is solved by correlating the
slices by 3-dimensional convolution of the mask with a rod-shaped
kernel aligned in the axial direction (z-direction) and again applying
a threshold. The threshold level can be varied like the previous
threshold level to provide higher or lower sensitivity to small
details. The result of each step in the masking algorithm is shown in

½Fig: 1� Figure 1. Altogether, the masking takes approximately 1 s per slice.
For masking of image series reconstructed with OSEM, some

of the smoothing steps described earlier are not strictly necessary
but sometimes can improve the results. Otherwise, the results of
this masking method applied to images reconstructed with OSEM
and images reconstructed with FBP are similar.

Data Analysis
The datasets from the animal studies were analyzed with

MVW-PCA. The data analysis was performed in a few steps;
the acquired PET data were reconstructed from the list mode with
FBP or OSEM and 4 time protocols. The images were then
masked with the masking technique described earlier. After
masking was performed, the images from FBP were prenormal-
ized with the background SD normalization technique described
earlier. Finally, PCA was performed on the masked (and, for
images from FBP, normalized) data, with the entire masked object
from different frames being treated as one observation. After PCA
was performed, the result was backprojected to the mask.

RESULTS

All images had 175 · 175 pixels of original data;½Fig: 2� the
images were cropped to better illustrate the results. Of½Fig: 3� the
images shown in Figures 2–9, those in Figures 2, 4, 6, and½Fig: 4� 8
were reconstructed with FBP (A–D in those figures)½Fig: 5� and
with OSEM (E–H in those figures).

The upper portions of the MVW-PC1 images from the ½Fig: 6�
mouse data shown in Figure 2 clearly reveal the spine; the ½Fig: 7�
kidneys are visible below the spine but have a much lower ½Fig: 8�
amplitude. These data represent nearly mean behavior, ½Fig: 9�as
indicated by the weight factors shown in Figure 3. There is
almost no visible difference in data obtained with the
various time protocols, and the behavior with OSEM is
similar to that with FBP.

The upper portions of the MVW-PC1 images from the rat
data shown in Figure 4 clearly reveal the spine; the kidneys
are also visible and have a high amplitude. These data
represent mean behavior, with an emphasis on the signal in
the later frames, as indicated by the weight factors shown in
Figure 5. There is almost no visible difference in data
obtained with the various time protocols, and the behavior
with OSEM is similar to that with FBP.

The MVW-PC2 images from the mouse data clearly
show the kidneys, whereas the spine has a low amplitude.
There is a small difference between OSEM, with which
some of the spine is still visible, and FBP, with which the
spine has an amplitude of almost 0 (Fig. 6). This difference
is also visible in the weight factors shown in Figure 7.

The MVW-PC2 images from the rat data clearly show
the kidneys, whereas the spine has an amplitude of almost
0. There is almost no visible difference between FBP and
OSEM (Fig. 8), as indicated by the weight factors shown in
Figure 9.

The different areas visible in both MVW-PC1 and
MVW-PC2 images ( ½Fig: 10�Fig. 10) were used to calculate time–
activity curves ( ½Fig: 11�Fig. 11). The data clearly show the
separation of different kinetic behaviors.

The images resulting from MVW-PCA clearly show the
separation of tracer kinetics in the spine into MVW-PC1
images and in the soft tissues of the kidneys and urinary

FIGURE 7. Weight factors for MVW-PC2 images of mouse data. (Left) Weight factors for images reconstructed with FBP. (Right)
Weight factors for images reconstructed with OSEM. In both cases, MVW-PC2 assigns higher weights to earlier frames, which
show higher signal intensity in kidneys, and negative weights in second half of scan, in which kidneys show little activity.
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tract into MVW-PC2 images. We fused MVW-PC1 and
MVW-PC2 volumes and illustrated the results using max-
imum-intensity projection (MIP), showing organs with
different kinetic behaviors in different colors (Supplemen-
tal Video 1) (supplemental materials are available online
only at http://tech.snmjournals.org). There are almost no
visible differences in the images, regardless of the frame
lengths chosen.

DISCUSSION

To provide useful results from any analysis method used for
PET data, the method should not depend on parameters
specified by the user, such as the time protocol chosen for
a dynamic PET scan. The results obtained with the analysis
method should depend as much as possible on the signal; little
or no variation should depend on other parameters. With

kinetic modeling methods, the results are markedly dependent
on the proper choice of the modeling approach on the basis of
kinetic behavior and predefined parameters. MVW-PCA does
not have modeling parameters like those used in kinetic
modeling or summation methods, but the results may depend
on the time protocol chosen for the PET scan.

In the present study, the performance of MVW-PCA was
studied with different time protocols and reconstruction
algorithms. The aim of the study was to investigate the
stability of the method with respect to the time protocols
chosen and the extraction and separation of signals with
different kinetic behaviors.

When dynamic PET data are analyzed with MVW-PCA,
the resulting images are weighted means of the different
frames. However, MVW-PCA uses no information about
the difference in frame lengths within the dataset; therefore,

FIGURE 8. Slice 31 of 61 from MVW-
PC2 images of data acquired in rat
study. Time protocols had frame lengths
of 1 min (A and E), 2 min (B and F), 5 min
(C and G), and 10 min (D and H). Kidneys
and urinary tract are clearly visible in
middle portions of images. There are
small but visible differences among
OSEM-reconstructed images (E–H). (A
color version of this figure is available as
a supplemental file online at http://
tech.snmjournals.org.)

FIGURE 9. Weight factors for MVW-PC2 images of rat data. (Left) Weight factors for images reconstructed with FBP. (Right)
Weight factors for images reconstructed with OSEM. In both cases, MVW-PC2 assigns higher weights to first half of frames, which
contain higher signal intensity in kidneys, and negative weights in last part of scan, in which kidneys have little activity. There are
differences between FBP and OSEM in shapes of weight factors, especially in beginning of scan, in which weight factor for OSEM-
reconstructed data (right) is close to 0 in first part of scan.
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the individual frames are considered equally important
when the covariance of the input data is calculated.
Therefore, the use of short frame lengths in the beginning
of the scan so as to discern rapid kinetics, such as those
seen in the blood vessels in a human brain PET scan, not
only will produce the effect of a high sampling frequency
but also will result in the beginning of the scan having more
impact when MVW-PCA is performed. In the present study,
the frame lengths used for image reconstruction were equal
throughout the entire scan so as to avoid making any
assumptions about different tracer kinetics and thereby
emphasizing any part of the dataset. However, for most
clinical and preclinical PET scans, frame lengths are
usually shorter at the beginning of a scan to compensate
for the decay of the radionuclide.

The images resulting from MVW-PCA show that the
use of different frame lengths has little effect on these
images. The difference seen among the weight factors
corresponding to the different time protocols is mostly
a scaling factor introduced because of the different
numbers of frames in the datasets. This situation is due
to the eigenvectors of the covariance matrix having unit
length. For images resulting from MVW-PCA, the scaling

factor is not visible because the images have been scaled
to the same amplitude interval.

The lack of difference in the results from the datasets
with different time protocols can be explained by the time–
activity curves for the regions with the highest activity in
the dataset shown in Figure 11. The kinetics in the spine
indicate that the tracer accumulates slowly but remains
throughout the scan. The kinetics in the kidneys and urinary
tract indicate a high tracer concentration immediately at the
beginning of the scan and then a rapid decline to a low
concentration for the remainder of the scan. These 2 kinetic
behaviors are easily separated with only a few frames.

Studying the weight factors and comparing them to the
time–activity curves for the different regions can explain
the results for the MVW-PC2 images, in which the spine
has an amplitude close to 0. The early frames show a high
amplitude in the kidneys but also some amplitude in the
spine. The fact that the spine is nearly removed from the
MVW-PC2 images is explained by the negative weights in
the later part of the scan, in which the spine has high
activity but there is nearly no activity in the kidneys.

The dataset with only 3 frames was sufficient to separate
the spine and kidneys even though the sampling frequency
was too low to describe the rapid kinetics in the kidneys
with any precision. Additionally, the difference between
images resulting from MVW-PCA with 30 frames and
images resulting from MVW-PCA with 3 frames was small.
These findings lead to the conclusion that MVW-PCA is
a stable method that depends more on the signal than on the
time protocol used for image reconstruction.

CONCLUSION

MVW-PCA can efficiently separate different kinetic behav-
iors and provide images in which areas with different tracer
uptake kinetics are easier to discern. Moreover, MVW-PCA is

FIGURE 10. Regions of interest (ROIs) used to calculate time–
activity curves shown in Figure 11. ROIs are drawn on MVW-PC1
image for spine and on MVW-PC2 images for kidneys. (A color
version of this figure is available as a supplemental file online at
http://tech.snmjournals.org.)

FIGURE 11. Time–activity curves for
spine and left and right kidneys. Activity
data were collected from 1-min frame of
original dataset obtained from scanned
mouse and reconstructed with FBP.

jnmt075085-pe n 5/10/10

APPLICATION OF MVW-PCA TO ANIMAL PET • Engbrant et al. 59



a stable technique in the sense that the time protocol chosen has
a small impact on image quality but not on separation.
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