Radioassay

Evaluation of New T₃ Uptake and Total T₄ Tests

Victor S. Wahby, Heinz W. Wahner, and Colum A. Gorman

Mayo Clinic and Mayo Foundation, Rochester, Minnesota

The T_3U and T_4 tests from Ames Co. were compared with two reference tests in their ability to classify populations of patients with regard to thyroid function. The CLINIRIA T_3U is the first all-liquid T_3 uptake test that lends itself to automation. In specificity and reproducibility, it was comparable to existing methods. The CLINIRIA T_4 and the reference method were equal in misclassification of patients but were different in the range of normal values. Both tests were of equal value when compared with already established thyroid function test procedures. Any advantage over previously introduced tests may come from considerations of cost-effectiveness and ease of automation and thus depends on specific laboratory circumstances.

Many methods to determine the degree of saturation of serum thyroxine-binding sites are presently in use. Recently, Ames Co. introduced an additional technique called the CLINIRIA T₃ Uptake (T₃U) test kit, which is the first totally liquid competitive protein-binding test introduced with the claim that it is precise, rapid, and stable for more than 20 weeks and can be readily automated. Concurrently, a compatible T₄ radioimmunoassay (CLINIRIA T₄) is available, which, when performed with the T₃U, facilitates economizing through the use of common tubes, pipets, and counting equipment.

The combination of T_4 radioimmunoassay and T_3U permits calculation of the free thyroxine index (FT₄I), which is considered at present to be the most reliable and widely used single test for thyroid function screening (1-3).

We have evaluated the diagnostic reliability of these new tests in patients with different thyroid function states and varying blood levels of thyroid-binding globulin.

Patients and Methods

Sera were obtained from 35 hypothyroid patients (9 men), 100 euthyroid patients (40 men) with or without thyroid replacement therapy, 31 euthyroid patients who

46

were either pregnant or taking oral contraceptives, and 35 hyperthyroid patients (11 men). The 100 normal subjects were further subdivided into "healthy" normals (n = 55) and "conditional" normals (n = 45). Conditional normals were euthyroid on thyroid replacement therapy or were patients with severe illness or taking drugs not known to affect thyroid function, such as sedatives and cardiac glycosides. Clinical assessment of thyroid status was supported in all hypothyroid patients by increased levels of serum thyroid-stimulating hormone and low levels of serum T₄ using an RIA from the Mayo Medical Laboratories ("reference TT₄"). The clinical diagnosis of hyperthyroidism was supported by elevated levels of serum T₄ supplemented, when indicated, by additional tests of thyroid function, such as I-131 uptake, T₃ suppression, or thyroid-releasing hormone stimulation tests. Table 1 gives information about the population studied.

After the thyroid status of patients was classified by clinical evaluation, reference TT_4 , and supporting thyroid function tests, the normal ranges for the Ames T_4 and T_3U were determined at the 95% confidence level and were compared with results from the reference methods. The reference method for T_3U was a commercial

Mean								
Group	N	Age (yr)	S.D.	Range (yr)				
Normal healthy	55	39.8	13.3	22-71				
Normal conditional	45	55.2	11.5	20-73				
Normal								
Males	40	44.3	14.8	22-73				
Females	60	48.3	14.4	20-72				
Therapy with oral								
contraceptive	20	39.3	14.0	24-68				
Pregnant	11	24.6	3.5	20-31				
Hypothyroid	35	50.8	16.4	19-80				
Hyperthyroid	35	46.3	18.6	16-82				

For correspondence contact: V.S. Wahby, c/o Section of Publications, Mayo Clinic, 200 First St., SW, Rochester, MN 55905.

		Intra-Assay				Interassay					
	Ames Serum	Replicates	Mean	1 S.D.	CV (%)*	Replicates	Mean	1 S.D.	CV (%)*		
	Α	60	30.75	0.611	1.99	60	30.75	0.272	0.88		
T₃U	В	60	34.52	0.580	1.68	60	34.52	0.492	1.43		
-	С	60	39.26	0.552	1.41	60	39.26		1.88		
	А	60	2.43	0.194	7.98	60	2.43	0.257	10.57		
T ₄	В	60	8.47	0.504	5.95	60	8.47	0.431	5.08		
	С	60	17.1 9	0.590	3.43	60	17.19	0.876	5.10		

test (Squibb), and the reference method for TT₄ was the procedure performed at the Mayo laboratories.

The Ames T₃U utilizes the competitive protein-binding principle. The Ames T₄ is an RIA based on the use of a specific rabbit T₄ antiserum. The thyroid-bindingglobulin blocking agent ANS (8-anilino-1-naphthalene sulfonic acid) is used. The detailed procedures are described in the manufacturer's literature or are available from us on request.

Results

Precision of Assays and Variability of the Standard Curve: Interassay and intra-assay variabilities were within the accepted range for both tests (Table 2). While the precision was essentially constant for Ames T₃U, it varied with the concentration in Ames T₄. The ranges of values obtained from normal subjects (healthy and conditional) are given in Table 3. The ranges for the Ames T_3U and T_4 were similar to the reference T_3U and T_4 tests. The ranges of the more reliable free T_4 index, however, were more clearly different with regard to Ames versus

TABLE 3. 95% Confidence Limits Estimated Nonparametrically from Data on 100 Normal Subjects (Conditional Plus Healthy)

	2.5 percentile	97.5 percentile			
Reference T ₁ U	22.95	34.90			
Ames T₃U	25.40	34.65			
Reference T ₄	3.95	11.50			
Ames T₄	4.80	13.60			
Reference FT₄I	113.66	344.48			
Ames FT₄I	150.90	389.98			

reference tests. There was no significant difference between the two T₄ values from healthy and conditional normals. Thus, the two populations were grouped together for the definition of the normal range.

Using thus-defined normal ranges, we examined patient groups who had known abnormal thyroid function and tried to examine misclassifications of these groups (Table 4).

		Predicted thyroid state based on normals* (conditional plus healthy									
		E	Euthyroid			Hypothyroid			Hyperthyroid		
Category		T₃U	T₄	FT₄I	T₃U	T4	FT₄I	T₃U	T₄	FT₄I	
Normals (healthy + conditional)	Мауо	96	96	95	2	2	2	2	2	3	
(n=100)	Ames	95	95	95	2	2	2	3	3	3	
Normal healthy	Mayo	53	53	52	1	2	2	1	0	1	
(n=55)	Ames	54	53	53	0	1	1	1	1	1	
Normal conditional	Mayo	43	43	43	1	0	0	1	2	2	
(n=45)	Ames	41	42	42	2	1	1	2	2	2	
Hypothyroid	Mayo	21	2	0	14	33	35	0	0	0	
(n=35)	Ames	10	1	0	25	34	35	0	0	0	
Hyperthyroid	Mayo	8	1	0	0	0	0	26	34	35	
(n=35)	Ames	6	1	0	0	0	0	29	34	35	
High thyroid-binding globulin	Mayo	13	13	18	7	0	0	0	7	2	
(n=20)	Ames	6	14	18	14	0	0	0	6	2	
Pregnant	Mayo	3	9	10	8	0	0	0	2	1	
(n=11)	Ames	2	7	11	9	0	0	0	4	0	

*95% confidence intervals were estimated nonparametrically for each of the three variables (T₃U, T₄, and FT₄I) for Ames and Mayo (see Table 1).

CLINIRIA T_3U : The T_3U , when used as the only test, misclassified a smaller number of hypothyroid patients relative to the reference method (ten versus 21). About an equal number of hyperthyroid patients were misclassified by the two tests (six versus eight). The reference method misclassified a smaller number of patients with high thyroid-binding globulins, as well as pregnant patients, compared with the T_3U reference method (seven versus 14 and eight versus nine).

CLINIRIA T_4 : The T_4 and the reference TT_4 methods were equal in misclassification of patients from different groups (normal, hypothyroid, hyperthyroid, high thyroid-binding globulins, and pregnancy).

 FT_4I : FT₄I was calculated as the product of T₄(μ g/dl)× T₃U (%). For all practical purposes, there was no difference between the two methods with respect to misclassification of patients in different groups.

Conclusions

The results of the CLINIRIA T_3U , CLINIRIA T_4 , and reference methods of estimating thyroid function are

comparable (as regards misclassification of patient groups). Normal values for T4 and FT4I, however, are different from the reference method, so that before the test can be used, a normal range has to be established. The technical advantages of the Ames assay—economy, stability, and ease of automation—appear to be worthwhile.

The CLINIRIA T_3U test, as a single thyroid function test, was superior to the reference method in classifying the patient groups but, as expected, was inadequate as a thyroid function test when used alone.

References

1. Clark F, Horn DB. Assessment of thyroid function by the combined use of the serum protein-bound iodine and resin uptake of ¹³¹Itriiodothyronine. J Clin Endocrinol Metab 1965; 25: 39-45.

2. Stein RB, Price L. Evaluation of adjusted total thyroxine (free thyroxine index) as a measure of thyroid function. *J Clin Endocrinol Metab* 1972; 34:225-28.

3. Morris CH, McCall MS. Consistency during 13 months of free thyroid index, triiodothyronine uptake and serum thyroxine, in normal persons. *Clin Chem* 1977; 23:302–03, (L).