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Respiration gating is used in PET to prevent image quality degra-
dation due to respiratory effects. In this study, we evaluated a
type of data-driven respiration gating for continuous bed motion,
OncoFreeze AI, which was implemented to improve image quality
and the accuracy of semiquantitative uptake values affected by
respiratory motion. Methods: 18F-FDG PET/CT was performed
on 32 patients with lung lesions. Two types of respiration-gated
images (OncoFreeze AI with data-driven respiration gating, device-
based amplitude-based OncoFreeze with elastic motion compen-
sation) and ungated images (static) were reconstructed. For each
image, we calculated SUV and metabolic tumor volume (MTV). The
improvement rate (IR) from respiration gating and the contrast-to-
noise ratio (CNR), which indicates the improvement in image noise,
were also calculated for these indices. IR was also calculated for
the upper and lower lobes of the lung. As OncoFreeze AI assumes
the presence of respiratory motion, we examined quantitative
accuracy in regions where respiratory motion was not present
using a 68Ge cylinder phantom with known quantitative accuracy.
Results: OncoFreeze and OncoFreeze AI showed similar values,
with a significant increase in SUV and decrease in MTV compared
with static reconstruction. OncoFreeze and OncoFreeze AI also
showed similar values for IR and CNR. OncoFreeze AI increased
SUVmax by an average of 18% and decreased MTV by an average
of 25% compared with static reconstruction. From the IR results,
both OncoFreeze and OncoFreeze AI showed a greater IR from
static reconstruction in the lower lobe than in the upper lobe. Onco-
Freeze and OncoFreeze AI increased CNR by 17.9% and 18.0%,
respectively, compared with static reconstruction. The quantitative
accuracy of the 68Ge phantom, assuming a region of no respiratory
motion, was almost equal for the static reconstruction and Onco-
Freeze AI. Conclusion: OncoFreeze AI improved the influence of
respiratory motion in the assessment of lung lesion uptake to a
level comparable to that of the previously launched OncoFreeze.
OncoFreeze AI provides more accurate imaging with significantly
larger SUVs and smaller MTVs than static reconstruction.
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In the staging, restaging, and assessment of the treatment
response of lung cancer, 18F-FDG PET/CT is useful (1,2).
Evaluation of lung lesions can be influenced by respiration
effects, which extend to blurred images, SUV, and meta-
bolic tumor volume (MTV) (3–6). It has been reported that
the respiratory motion of the lungs is greater in the lower
lobe than in the upper lobe by a maximum of 6–12 cm (7,8).
As an imaging biomarker, SUV is highly reproducible and
ideal for monitoring tumor response to treatment in individ-
ual patients (9). But the reliability of 18F-FDG PET as a way
to assess treatment response is compromised if these indices,
which monitor tumor responsiveness in areas affected by
respiratory motion and areas not affected by respiratory
motion, cannot be evaluated equivalently.
To solve these problems, a scan method with respiration

gating has been developed to detect breathing motion using a
device that captures respiration as a waveform and detects the
expiratory phase to get a low-motion image (10,11). However,
as only the expiration phase is used from the collected data,
the scan time is extended. A mechanism was proposed that
combines amplitude-based PET gating with elastic motion cor-
rection for comprehensive respiratory management (12). Based
on the spectral analysis method developed for single-bed-
position PET imaging, respiration-gated imaging can be per-
formed with deviceless waveforms that are derived directly
from PET list-mode raw data (13,14). Several different
approaches toward deviceless waveform generation for PET
have been robustly demonstrated on single-bed-position
PET (14–16). The deviceless waveform in the multibed
position was first realized by step-and-shoot collection (17).
OncoFreeze (Siemens) is a type of respiration gating soft-

ware that combines continuous bed motion (CBM) and
device- and amplitude-based PET gating with elastic motion
compensation (12). OncoFreeze provides a new respiration
gating function based on HD-Chest (Siemens) technology
that does not require an increase in imaging time. OncoFreeze
uses a mass-preserving optical flow to generalize respiratory
motion and reconstructs the image using all breath-count data
from the HD-Chest image as a reference.
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OncoFreeze AI (Siemens), a data-driven deviceless res-
piration gating system (DDG), was later created (18,19).
OncoFreeze AI extracts respiratory waveforms for each
patient from continuous PET data using FlowMotion tech-
nology (Siemens) and reconstructs respiration-gated images
based on those respiratory waveforms. OncoFreeze AI esti-
mates the respiratory waveform on the basis of the features
of DDG and FlowMotion.
Both OncoFreeze AI and OncoFreeze are equipped on the

Biograph Horizon 4R PET/CT system (Siemens) (19). The pur-
pose of this study was to verify their usefulness in lung lesions.

MATERIALS AND METHODS

The Institutional Review Board and Ethics Committee of Kyoto
Prefectural University of Medicine, Japan, approved this retrospec-
tive study (approval ERB-C-2578), and the requirement to obtain
informed consent was waived. Thirty-eight lesions in 32 lung can-
cer patients who underwent 18F-FDG respiration-gated PET/CT
between January 2022 and May 2022 were included. The lesions
consisted of 18 in the upper lobe, 5 in the middle lobe, and 15 in
the lower lobe. The mean age of the patients was 73.7 y (range,
50–93 y), 20 were men and 12 women, their mean (6SD) body
mass index was 22.28 6 3.62, and the mean dose of 18F-FDG was
202.28 6 25.79 MBq (3.61 6 0.65 MBq/kg).
The PET/CT examination was per-

formed as follows. Before 18F-FDG injec-
tion, the patients fasted for more than 4 h,
and their blood glucose levels were con-
firmed to be below 200 mg/dL. Each
patient received 18F-FDG using an auto-
matic injection system (Auto Dispensing
Injector UG-05; Universal Giken Co.
Ltd.). Imaging was performed 60 min after
the 18F-FDG injection using a Biograph
Horizon 4R PET/CT system and using
CBM at varying speeds (1.5 mm/s from
the head to the pelvis and 3.5 mm/s for the
lower limbs). During examination, the belt
gating system (AZ-733VI; Anzai Medical,
Co. Ltd.) recorded respiratory signals that
were used for gating.
PET images were reconstructed using

3-dimensional ordered-subset expectation

maximization coupled with point-spread-function and time-of-
flight algorithms. The following clinical parameters were set: 4
iterations, 10 subsets, a postreconstruction gaussian filter of 5 mm
in full width at half maximum, and a matrix of 180 3 180 pixels
(pixel size, 4 mm). A low-dose CT scan was acquired for PET
attenuation correction, anatomic information, and image fusion
with the following scanning parameters: tube voltage, 130 kV;
quality reference mAs, 90; rotation time, 0.6 s; pitch, 1.5; slice
thickness, 2.0 mm; transaxial field of view, 700 mm; and matrix
size, 512 3 512. At the chest, static reconstruction was performed,
as well as respiration-gated reconstruction using OncoFreeze AI
and OncoFreeze.
In the procedure for OncoFreeze AI, first the respiratory wave-

form was estimated using the change in the anterior–posterior
direction from the PET data collected by FlowMotion (respira-
tory curve A). The PET data were then divided into 500-ms
volumes and were Fourier-transformed with respect to time.
Respiratory curve A was also Fourier-transformed to determine
the conditions (frequency and range) to be used in the spectral
analysis method. All PET data were then calculated using the spec-
tral analysis method, and a mask was created for each voxel to
compensate for the effect of respiration. The mask was applied to
the temporally segmented volume data to generate a respiratory
waveform (respiratory curve B), which was then normalized.
Respiratory curves A and B were compared to create a deviceless
respiratory waveform that matched the actual respiratory motion
and allowed for respiration-gated image reconstruction (18,19).
For each reconstruction algorithm, SUVmax, SUVpeak, and MTV

were measured; the threshold for MTV was set at 40% SUVmax,
and the MTV unit was cm3. The SUVs were calculated using
body weight.
The improvement rate (IR) over static reconstruction with respi-

ration gating was calculated for SUVmax, SUVpeak, and MTV.
The IR of SUVmax (IRSmax) for OncoFreeze AI was calculated

using the following formula:

IRSmax ð%Þ5 ðOncoFreeze AI2 staticÞ
static

3 100: Eq. 1

The same formula was also used to calculate the IR of SUVpeak

(IRSpeak) and the IR of MTV (IRMTV), and OncoFreeze was cal-
culated in the same way.
SUV SD (a surrogate for image noise) was measured using a

3-cm-diameter spheric region of interest in the lung that we

A B

FIGURE 1. SUVmax and SUVpeak (A) and MTV (B) for static
reconstruction, OncoFreeze, and OncoFreeze AI. *P , 0.001 for
static reconstruction.

A B C

FIGURE 2. A 64-y-old man with lung cancer in left upper lobe (patient height, 175.8 cm;
patient weight, 76.0 kg; 18F-FDG dose, 2.99 MBq/kg). Transverse PET images are shown
for static reconstruction (A), OncoFreeze (B), and OncoFreeze AI (C).
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assessed to be free of disease. The contrast-to-noise ratio (CNR)
for each sphere was calculated according to Equation 2 using the
lesion SUVmax, background sphere SUVmax, and background
sphere SUV SD:

CNR5
ðlesion SUVmax 2 background sphere SUVmaxÞ

background sphere SUV SD
: Eq. 2

The respiratory rate of the DDG-generated waveform was com-
pared with the respiratory rate accepted by the waveform device.
The accepted respiratory rate was recorded on the PET device.

68Ge cylinder phantom CS-27 (Siemens), with a volume of
8,407 mL, radius of 10 cm, and radioactivity of 73.01 MBq
(8.68 kBq/mL), was used to examine the quantitative accuracy in
those areas where OncoFreeze AI was applied that were largely
unaffected by respiratory motion. PET data were acquired at bed
speeds of 0.6–3.0 mm/s (0.3 mm/s increments). A large volume of
interest was constructed in the center to avoid partial-volume and
edge effects, and SUVmean, SUVmax, SUV SD, and radioactivity
(Bq/mL) were calculated. These indices were determined using
syngo.via (Siemens).
All statistical analyses were performed with EZR (Saitama

Medical Center, Jichi Medical University), which is a graphical
user interface for R (The R Foundation for Statistical Computing)
designed to add statistical functions frequently used in biostatistics
(20). The significance of SUVmax, SUVpeak, MTV, and CNR were
determined by the Wilcoxon signed-rank test with Bonferroni
adjustment. IRSmax, IRSpeak, and IRMTV were determined by the

Mann–Whitney U test, and the waveform
respiration rate was determined by the
paired t test.

RESULTS

SUVmax, SUVpeak, and MTV cal-
culated by OncoFreeze AI were al-
most the same as those calculated by
OncoFreeze. Compared with static re-
construction, SUVmax and SUVpeak

showed an increase and MTV a de-
crease (Figs. 1–3). The mean (6SE)
SUVmax for static reconstruction, Onco
Freeze, and OncoFreeze AI was 7.08 6
1.11, 8.40 6 1.28, and 8.39 6 1.31,
respectively; SUVpeak was 5.18 6 0.86,
5.67 6 0.93, and 5.70 6 0.95, respec-

tively; and MTV was 10.73 6 1.96, 8.31 6 1.56, and 8.05 6
1.51, respectively. The SUVmax, SUVpeak, and MTV of
OncoFreeze AI and OncoFreeze correlated well (Fig. 4).
IRSmax, which represents the improvement in SUVmax,

was 18.3% 6 2.6% for OncoFreeze and 17.9% 6 2.2% for
OncoFreeze AI. IRSpeak was 9.7% 6 1.3% for OncoFreeze
and 9.6% 6 1.3% for OncoFreeze AI. IRMTV was
224.2% 6 3.2% for OncoFreeze and 225.5% 6 2.9% for
OncoFreeze AI. IRSmax in the upper and lower lobes was
12.0% 6 2.2% and 26.7% 6 5.2%, respectively, for Onco-
Freeze and 13.9% 6 2.2% and 23.8% 6 4.3%, respectively,
for OncoFreeze AI. IRSpeak in the upper and lower lobes was
7.5% 6 1.0% and 13.3% 6 2.9%, respectively, for Onco-
Freeze and 7.4% 6 1.1% and 12.9% 6 2.7%, respectively,
for OncoFreeze AI. IRMTV in the upper and lower lobes
was 217.2% 6 3.9% and 233.7% 6 5.7%, respectively,
for OncoFreeze and 222.1% 6 3.8% and 232.1% 6 5.2%,
respectively, for OncoFreeze AI (Figs. 5 and 6). Only the
IRSmax of OncoFreeze differed significantly between the
upper and lower lobes (P 5 0.0273); otherwise, there were
no significant differences between the upper and lower lobes
for either OncoFreeze or OncoFreeze AI.
CNR was significantly higher for OncoFreeze and Onco-

Freeze AI than for static reconstruction (Fig. 7). The percent-
age increases for CNR in comparison to static reconstruction

for OncoFreeze and OncoFreeze AI
were 17.9% and 18.0%, respectively.
In OncoFreeze AI and OncoFreeze,
the number of breaths in the generated
waveform was expressed as counts.
The respiratory rate of the DDG-
generated waveform (OncoFreeze AI)
was 223.7 6 31.2 counts, and the res-
piratory rate accepted by the waveform
device (OncoFreeze) was 218.0 6 52.5
counts; this difference was not sig-
nificant (P 5 0.602). Statistical sig-
nificance was set as P , 0.05. The

A B C

FIGURE 3. A 77-y-old woman with lung cancer in right lower lobe (patient height,
153.5 cm; patient weight, 56.7 kg; 18F-FDG dose, 3.26 MBq/kg). Transverse PET images
are shown for static reconstruction (A), OncoFreeze (B), and OncoFreeze AI (C).

A B C

FIGURE 4. Correlation of OncoFreeze and OncoFreeze AI for SUVmax (A), SUVpeak (B),
and MTV (C).
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correlation of the accepted respiratory rate was y 5 1.31x
2 76.57, with R2 5 0.61 (x, OncoFreeze AI; y, Onco
Freeze).
The effect of OncoFreeze AI on quantitative accuracy

was examined using a 68Ge cylinder phantom, assuming a
region of unchanged counts, and the SUVmean of the vol-
ume of interest was 1.04 for both static reconstruction and
OncoFreeze AI, regardless of bed speed. On the other hand,
SUVmax for both static reconstruction and OncoFreeze AI
increased slightly with increasing bed speed. SUVmax was
slightly higher for OncoFreeze AI than for static reconstruc-
tion. The SUVmax of OncoFreeze AI, when the SUVmax of
static reconstruction was set to 1, averaged 1.05 6 0.02,
showing little deviation from the increase in the SUVmax of
static reconstruction with increasing bed speed. The radioac-
tivity at the acquisition date, calculated from the radioactivity
at the assay date, was 8.68 kBq/mL, and the mean radioactiv-
ity of static reconstruction and OncoFreeze AI was 9.06 6
0.01 and 9.026 0.02 kBq/mL, respectively (Table 1).

DISCUSSION

We compared OncoFreeze AI, a deviceless respiration gating
system for CBM imaging, with OncoFreeze, a device-based
system, on the Biograph Horizon, a popular commercially
available general-purpose PET/CT machine. Reports so far
have not investigated use on popular PET/CT systems and

instead have focused on the high-end Biograph mCT (Siemens)
and a semiconductor PET machine, Biograph Vision (Sie-
mens) (18,21). In this study, we found that on the Biograph
Horizon, OncoFreeze AI and OncoFreeze had the same
SUVmax, SUVpeak, and MTV in lung lesions (Fig. 4).
Respiratory motion is greater in the lower lobe than in the

upper lobe (4). IRSmax, IRSpeak, and IRMTV showed a trend
toward a greater correction effect on respiratory motion in
the lower lobe than in the upper lobe. However, there was
no significant difference in correction effect between the
upper and lower lobes, except for IRSmax in OncoFreeze
(P 5 0.0273) (Figs. 5 and 6). Robin et al. reported a greater
increase in SUV and decrease in MTV in the lower lobe
than in the upper lobe because of the correction effect of res-
piratory motion on amplitude-based respiration-gated HD-
Chest imaging (6). In the present study, the same trend was
observed for both OncoFreeze and OncoFreeze AI.
Meier et al. used CNR as a metric to capture both SUVmax

and noise. Their study reported a decrease in CNR with cor-
rection methodologies that use decreasing amounts of PET
data; however, in lung lesions, the elastic motion deblurring
algorithm improved the CNR of the lesion by 17.8%, with
the least increase in image noise (22). In the present study,
OncoFreeze and OncoFreeze AI, which did not involve a
decrease in PET data, showed a significant increase in CNR
(17.9% and 18.0%, respectively). The fact that the respira-
tory rate generated by OncoFreeze AI, which generates
respiratory waveforms without a device, was not signifi-
cantly different from the respiratory rate measured by the
device also indicates the usefulness of OncoFreeze AI.
Since OncoFreeze AI is a deviceless method, the waveforms

generated are completely dependent on the acquired PET data.
To extract respiratory signals, respiratory motion must be
present in the PET data (19). Therefore, using a 68Ge cylin-
der phantom, we verified the accuracy of quantification in
a region where no respiratory motion was assumed, and
we found that SUVmean and quantification accuracy were

FIGURE 5. IRSmax from static reconstruction to OncoFreeze
and OncoFreeze AI for 18 upper-lobe and 15 lower-lobe lesions.
ns5 not statistically significant. *P5 0.0273.

FIGURE 6. IRMTV from static reconstruction to OncoFreeze
and OncoFreeze AI for 18 upper-lobe and 15 lower-lobe lesions.
ns5 not statistically significant.

FIGURE 7. Static reconstruction, OncoFreeze, and OncoFreeze
AI in CNR. *P, 0.001 for static reconstruction.
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comparable to those of static reconstruction. SUVmax was
slightly higher for OncoFreeze AI than for static reconstruc-
tion, but the change in SUVmax with increasing bed speed
was the same for static reconstruction and OncoFreeze AI
(Table 1). These results indicate that OncoFreeze AI reduced
the effect of respiratory motion without compromising quan-
titative accuracy in the absence of respiratory motion.
There were some limitations to our study. Though the image

quality and other semiquantitative parameters improved, clini-
cal impact on patient management needs further evaluation.
The present technique not only improved detection of lung
lesions but also may improve detection of subdiaphragmatic
hepatic lesions, which is a potential additional advantage but
not examined in the present study.
One of the features of PET/CT with the CBM mechanism,

such as on the Biograph Horizon, is the whole-body dynamic
imaging function. At present, dynamic images from whole-
body dynamic imaging cannot be combined with OncoFreeze
AI; however, when this capability is realized, it will be useful
(23–27). OncoFreeze AI eliminates the need to attach the
device to the patient, leading to shorter examination times for
the patient and reduced radiation exposure for the operator.
Respiration-gated reconstruction that takes into account the
effects of respiratory motion is expected to significantly con-
tribute to SUV and harmonization, which are widely used in
clinical studies of lung cancer (28,29).

CONCLUSION

OncoFreeze AI, which does not require a device, can cal-
culate SUVs and metabolic volumes comparable to those of
OncoFreeze, which uses a device to measure respiratory
motion. Compared with static reconstruction, OncoFreeze
AI provides more accurate lung lesion images with signifi-
cantly larger SUVs and smaller metabolic volumes.
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KEY POINTS

QUESTION: Is a commercialized DDG application useful
for evaluating lung lesion uptake in CBM 18F-FDG PET?

PERTINENT FINDINGS: Data-driven respiration gating
was performed on 38 lung lesions in a CBM 18F-FDG PET
study and significantly increased SUV and decreased MTV
compared with no gating. Although data-driven deviceless
respiration-gated reconstruction assumes the presence of
respiratory motion, the phantom test results did not impair
quantification in regions where respiratory motion was
absent.

IMPLICATIONS FOR PATIENT CARE: DDG reconstruction
for evaluation of lung lesions in CBM FDG PET can properly
evaluate 18F-FDG uptake.
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