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18F-FDG PET/CT quantification of whole-body tumor burden in
lymphoma is not routinely performed because of the lack of fast
methods. Although the semiautomatic method is fast, it is not fast
enough to quantify tumor burden in daily clinical practice. Our pur-
pose was to evaluate the performance of convolutional neural net-
work (CNN) software in localizing neoplastic lesions in whole-body
18F-FDG PET/CT images of pediatric lymphoma patients. Meth-
ods: The retrospective image dataset, derived from the data pool
of the International Atomic Energy Agency (coordinated research
project E12017), included 102 baseline staging 18F-FDG PET/CT
studies of pediatric lymphoma patients (mean age, 11 y). The
images were quantified to determine the whole-body tumor burden
(whole-body metabolic tumor volume [wbMTV] and whole-body
total lesion glycolysis [wbTLG]) using semiautomatic software and
CNN-based software. Both were displayed as semiautomatic
wbMTV and wbTLG and as CNN wbMTV and wbTLG. The intra-
class correlation coefficient (ICC) was applied to evaluate concor-
dance between the CNN-based software and the semiautomatic
software. Results: Twenty-six patients were excluded from the
analysis because the software was unable to perform calculations
for them. In the remaining 76 patients, CNN and semiautomatic
wbMTV tumor burden metrics correlated strongly (ICC, 0.993;
95% CI, 0.98920.996; P , 0.0001), as did CNN and semiauto-
matic wbTLG (ICC, 0.999; 95% CI, 0.998–0.999; P , 0.0001).
However, the time spent calculating these metrics was signifi-
cantly (,0.0001) less by CNN (mean, 19 s; range, 11–50 s) than by
the semiautomatic method (mean, 21.6 min; range, 3.2–62.1 min),
especially in patients with advanced disease. Conclusion: Deter-
mining whole-body tumor burden in pediatric lymphoma patients
using CNN is fast and feasible in clinical practice.
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For pediatric staging and treatment response evaluation
of Hodgkin and non-Hodgkin lymphoma, 18F-FDG PET/CT
is an invaluable tool and an established modality (1–7). Visual
interpretation of 18F-FDG PET/CT studies to assess the extent
of disease can be subjective; therefore, qualitative interpreta-
tion is necessary to provide additional insight, reducing the
subjectivity of visual interpretation (8,9). 18F-FDG PET/CT
whole-body metabolic tumor burden parameters such as
metabolic tumor volume (MTV) and total lesion glycolysis
(TLG) bear a high prognostic value in lymphoma patients,
much greater than SUVs (10–13). However, the prognostic
determination, although easily measured in primary solid
tumors (14–17), has not been applied in daily clinical prac-
tice to patients with widespread lymphoma disease because
calculations are extremely time-consuming.
There is a wide variety of methods to quantify MTV and

TLG, using threshold-based or algorithm-based methods. Spe-
cifically relating to the threshold-based methods, the most
commonly applied is the volume-of-interest (VOI) isocontour
method (15,17,18). Automatic multifocal segmentation quanti-
fication in patients with lymphoma uses VOI isocontour and
has been validated before and proven to be quite fast (19).
Depending on patient tumor burden, the time spent calculating
MTV and TLG could be impractical and still not feasible in
daily clinical practice. The extraction and processing of imag-
ing features from radiologic data, also known as radiomics,
may also link imaging features with patient outcome. How-
ever, radiomics also requires precise tumor ROI delineation,
which is also time-consuming, with delineation variabilities
between observers.
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Computer deep learning and functioning as a neural net-
work have evolved substantially, achieving remarkable suc-
cess in tumor segmentation and diagnosis and ultimately
transforming and optimizing clinical practice (18,20–23),
providing objective and accurate diagnoses in medicine
by building diagnostic models. For example, software
for multimodality imaging using deep convolutional neu-
ral networks (CNNs) automatically localizes and delin-
eates metastases in whole-body 18F-FDG PET/CT scans.
Deep CNN seems capable of correctly localizing and
classifying uptake patterns in 18F-FDG PET/CT images
into foci suggestive and nonsuggestive of cancer. These
extracted features help the semantic interpretation and
may simplify the PET workflow with a 1-click calcula-
tion of whole-body tumor burden (24–26). However, the
clinical applicability of this software has not yet been
fully tested, and unusual features may be identified if
unsupervised by a physician (27,28).
The purpose of this study was to evaluate the performance

of the recently developed CNN software in a clinical setting
in pediatric lymphoma patients.

MATERIALS AND METHODS

This dataset, retrospectively studied, is derived from a subset of
102 baseline staging 18F-FDG PET/CT studies of pediatric lym-
phoma patient images from the data pool of the prospective multicen-
ter research project coordinated by the International Atomic Energy
Agency (coordinated research project E12017).

Research Regulation and Data
Protection
The study protocol was approved by

each center’s Institutional Review Board.
A signed parental consent form was an
inclusion criterion for recruitment, and all
subjects gave such consent. Cases and forms
were anonymized to ensure confidentiality
while sharing data internationally.

Patients
The eligibility criteria consisted of pedi-

atric patients (age , 18 y) with newly
diagnosed Hodgkin lymphoma or non-
Hodgkin lymphoma who underwent a
staging 18F-FDG PET/CT scan. According
to the World Health Organization classifi-
cation criteria, the diagnosis was based on
biopsy with immunohistochemistry (29).
Exclusion criteria consisted of prior radia-
tion therapy and chemotherapy and con-
current HIV infection.
The patient’s clinical characteristics

and tumor stage were evaluated, such
as the age at diagnosis, the final clinical
stage, spleen disease, additional nodal
sites, disease volume, B symptoms, lac-
tate dehydrogenase level, leukocytosis,
erythrocyte sedimentation rate, anemia,

albumin level, bone marrow 18F-FDG uptake, Deauville score,
MTV, and TLG.

18F-FDG PET/CT Imaging and Quantification
All patients underwent staging whole-body 18F-FDG PET/CT,

from the top of the skull to the toes. All scans were obtained
according to standard Society of Nuclear Medicine and Molecular
Imaging or European Association of Nuclear Medicine procedure
guidelines (30).
The whole-body MTV (wbMTV) and whole-body TLG (wbTLG)

metrics were calculated using semiautomatic and CNN software. All
images on both types of software were processed by 2 observers.
Differences in the wbMTV and wbTLG metrics (if any) were recal-
culated to reach consensus. The semiautomatic software was used as
the reference standard to evaluate the CNN software’s performance.
Semiautomatic Quantification of Whole-Body Tumor Bur-

den. The wbMTV and wbTLG metrics were calculated using
semiautomatic multifocal segmentation software (Syngovia VB20;
Siemens Medical Solutions), previously validated for clinical use
(19) using a fixed threshold.
With this software, the whole-body tumor burden metrics (semi-

automatic wbMTV and wbTLG) were obtained. The semiauto-
matic whole-body tumor burden was obtained by choosing the
multifocal segmentation tool that automatically draws a rectangu-
lar VOI around the patient’s entire body on the coronal axis. If
necessary, the VOI is adjusted in the axial and sagittal planes. The
liver is set as the background reference, and then volumes of inter-
est are automatically determined surrounding each lymphoma
lesion with uptake higher than the SUVmean of the liver. A VOI
threshold of 41% of the SUVmax using isocontour drawings was
applied for all automatically delineated lesions. The image and
VOIs were then reviewed to exclude physiologic areas incorrectly

FIGURE 1. Whole-body tumor burden quantification on baseline staging 18F-FDG PET/
CT using semiautomatic software on patient with non-Hodgkin lymphoma. (A) Maximum-
intensity projection shows hypermetabolic lymphoma infiltration in left supraclavicular
and cervical lymph nodes, mediastinal lymph nodes, and extensively in abdominopelvic
lymph nodes; lung nodules; and bone infiltration. (B) For calculation, liver is set as back-
ground reference, and VOIs automatically surround each lymphoma lesion with uptake
higher than SUVmean of liver. VOIs also include physiologic areas incorrectly selected as
cancer to include metastatic foci with relatively low uptake, such as lung nodule metasta-
sis with mild 18F-FDG uptake in right upper lobe.
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selected as cancer (such as brain, kidneys, bladder, and ureters)
and include metastatic foci with relatively low uptake that were
missed by the software (e.g., small lymph nodes). Afterward,
whole-body MTV and TLG calculations were readily available
and displayed as semiautomatic wbMTV and wbTLG (Fig. 1).
CNN Quantification of Whole-Body Tumor Burden. The

wbMTV and wbTLG metrics were calculated using software
based on deep CNN (Syngovia VB50; Siemens Healthineers).
With this software, the whole-body tumor burden metrics (CNN
wbMTV and wbTLG) were obtained.
Computation of the whole-body tumor burden on the CNN soft-

ware was automatically performed by the deep CNN method as
described by Sibille et al. (24). Unlike the semiautomatic software,
the CNN software does not require an initial positioning of a VOI
surrounding the body. The CNN automatically computes the maxi-
mum-intensity-projection 18F-FDG PET image and integrates the
anatomic CT image using an intuitive interface. Afterward, the soft-
ware automatically detects 18F-FDG–avid anatomic landmarks and
discriminates hypermetabolic areas related to the physiologic activity
that will be automatically excluded (Fig. 2) from cancer. Briefly, the
PET VOIs are segmented using a fixed threshold algorithm and eval-
uated by the deep CNN. Whole-body CT examinations are aligned
to an anatomic atlas. Finally, a maximum-intensity projection of the
whole-body 18F-FDG PET/CT is reconstructed, and the lesions are
classified. The deep CNN uses a combination of multiplanar

reconstructions of PET and CT, 18F-FDG PET maximum-intensity
projections, and anatomic atlases to predict the anatomic localization
of 18F-FDG foci and determine whether a focus was suggestive (or
not) for malignancy. The advantage of the CNN algorithm is that it
does not require the initial positioning of a VOI. This specific CNN
software is not yet validated for pediatric patients.
Two forms of analyses were undertaken on the CNN software:

the observer method, in which all VOIs automatically generated
by the multifocal segmentation tool were reviewed (in a masked
manner) by both observers to determine whether the VOIs were
wrongly included or excluded from the results (afterward, values
were calculated and displayed as CNN 1 observer wbMTV and
wbTLG), and the no-observer method, in which the VOIs auto-
matically obtained were accepted and did not undergo a masked
review by each of the observers. The calculations were readily
available and displayed as CNN wbMTV and wbTLG.

Statistical Analysis
The sample was characterized by descriptive analysis, performed

using frequency tables for categoric variables and measures of posi-
tion and dispersion for continuous variables (mean, SD, median,
minimum and maximum).

FIGURE 2. Whole-body tumor burden quantification on staging
18F-FDG PET/CT using CNN. Displayed in red are regions that
software excluded from analysis (regions related to physiologic
uptake: brain, head and neck, heart, intestines, kidneys, and
bladder), and displayed in green are regions that software
included in calculation of whole-body tumor burden. In this
patient, extensive cervical lymph node bulky mass and mediasti-
nal lymph nodes were included.

TABLE 1
Clinical Characteristics of Patients (n 5 102)

Parameter Variable Number Percentage

Sex Female 32 31.4%
Male 70 68.6%

Lymphoma type Hodgkin 80 78.4%
Non-Hodgkin 22 21.6%

Clinical final stage 1 8 7.8%
2 34 33.3%
3 34 33.3%
4 26 25.5%

Spleen Yes 29 28.4%
Disease No 73 71.6%
Extranodal sites 0 67 65.7%

1 15 14.7%
$2 20 19.6%

Disease bulk Bulky 63 61.8%
Nonbulky 39 38.2%

B symptoms Yes 43 43.0%
No 57 57.0%

LDH High 47 52.8%
Normal 42 47.2%

Leukocytosis Yes 32 31.7%
No 69 68.3%

Erythrocyte
sedimentation
rate

Normal 34 52.3%

Elevated 31 47.7%
Anemia Yes 47 47.5%

No 52 52.5%
Albumin Yes 27 37.0%

No 46 63.0%
Bone marrow Diffuse 12 11.9%
18F-FDG Focal 16 15.8%
Uptake Negative 73 72.3%
Event Yes 10 9.8%

No 92 90.2%
Status Alive 101 99.0%

Dead 1 1.0%
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The x2 test or Fisher exact test was used to check associations or
compare proportions, and the Mann–Whitney test was used to com-
pare continuous or orderable measurements between the 2 groups.
Risk factors associated with the event were identified with univari-
ate and multiple Cox regression analyses. The variable selection
process used was stepwise.
To verify the relationship between continuous measurements, the

Spearman correlation coefficient was used ranging from 21 to 1.
To assess agreement between the semiautomatic and CNN soft-

ware, the intraclass correlation coefficient (ICC) was used (values
above 0.7 were considered to indicate substantial agreement). The
Friedman test and the Wilcoxon test for related samples were used
to compare the times. The time was defined as the moment that
the physician began focusing on the task until the moment that the
whole-body tumor burden calculation was completed. The level of
significance was 0.05.

RESULTS

The whole-body tumor burden was quantified using both
types of software in 102 18F-FDG PET/CT baseline scans of
pediatric lymphoma patients. There were 32 (31.4%) girls and
70 (68.6%) boys. The mean age at lymphoma diagnosis was
11.1 6 4.3 y (range, 4.0–18.0 y). Among these, 80 (78.4%)
patients had Hodgkin lymphoma, and 22 (21.6%) had

non-Hodgkin lymphoma. Table 1 displays the clinical
characteristics.

Semiautomatic Calculation of Whole-Body Tumor Burden
The semiautomatic wbMTV and wbTLG were calculated

in all 102 patients. The average time spent on this calcula-
tion was 21.6 min, ranging from 3.2 to 62.1 min. Notably,
in patients with widespread lesions in multiple organs or
confluent with areas of physiologic excretion, the software
took longer to identify and delineate abnormal areas.

CNN-Based Calculation of Tumor Burden
The CNN 1 observer wbMTV and wbTLG were also

calculated in all 102 patients. The average time spent on
this calculation, with the CNN software having the observ-
ers evaluate the images before calculation, was 3.8 min,
ranging from 0.5 to 19.6 min.
On the other hand, CNN wbMTV and wbTLG (i.e., with-

out any observer evaluating the CNN software’s perfor-
mance before calculation) were calculated in 76 of the 102
patients. Twenty-six patients were excluded from the analy-
ses because the software could not perform calculations
because of patient movement or misregistration (n 5 6),
because the software could not recognize small lymph nodes

as diseased (n 5 8), or because there
was widespread brown fat (n 5 3), dif-
fuse bone infiltration (n 5 5), diffuse
homogeneous mild infiltration of the
spleen (n 5 2), or subcutaneous infil-
tration of 18F-FDG at the injection site
(n 5 2) (Fig. 3).
Impressively, the average total time

spent calculating CNN wbMTV and
wbTLG was 19 s, ranging from 11 to
50 s. This total time begins when the
physician begins focusing on the task
and ends at completion of the whole-
body tumor burden calculation. Thus,
the times spent calculating CNN,
CNN 1 observer, and semiautomatic
wbMTV metrics in 76 paired patients
were significantly different (P ,
0.0001). The CNN software alone was
much faster and more precise than
either the semiautomatic or the CNN 1
observer method (Table 2).

Comparison of Semiautomatic and CNN
Tumor Burden Measurements
The CNN 1 observer and semiauto-

matic wbMTV metrics calculated on the
102 patients correlated strongly (ICC,
0.993; 95% CI, 0.989–0.996; P ,
0.0001), as did the CNN 1 observer
and semiautomatic wbTLG metrics
(ICC, 0.999; 95% CI, 0.998–0.999;
P , 0.0001). Among the 76 18F-

FIGURE 3. Baseline staging 18F-FDG PET/CT of patient with Hodgkin lymphoma. (A)
Maximum-intensity projection reveals cervical hypermetabolic bulky mass. (B) Image dis-
played with different whole-body tumor burden quantification methods shows that using
semiautomatic method, VOIs are delineated in cancer lesions and also in physiologic
regions not related to cancer; these regions must be deleted before quantification.
Whole-body tumor burden calculation showed semiautomatic wbMTV of 104 and TLG
of 1,663; time spent calculating these metrics was 5 min. (C) CNN whole-body tumor
burden quantification does not delineate regions nonrelated to cancer and demonstrates
similar metrics: CNN 1 observer wbMTV of 105 and CNN 1 observer wbTLG of 1,671.
Time spent calculating was significantly less (13 s) even though CNN software failed to
delineate spleen, which had to be performed manually.
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FDG PET/CT studies in which the fully automatic CNN
was performed, the CNN 1 observer, CNN, and semiauto-
matic wbMTV metrics also correlated strongly, as did the
CNN 1 observer, CNN, and semiautomatic wbTLG metrics
(Table 3).
Impressively, the correlation between CNN and semiau-

tomatic wbMTV was significantly high (ICC, 0.950; 95%
CI, 0.922–0.968; P , 0.0001), as was CNN and semiauto-
matic wbTLG (ICC, 0.947; 95% CI, 0.917–0.966; P ,
0.0001). Therefore, the CNN software performed equally
well, similar to the semiautomatic tool in which an experi-
enced observer evaluated the images.
More impressive, however, was the fact that the correla-

tion between CNN 1 observer and CNN wbMTV was sig-
nificantly high (ICC, 0.946; 95% CI, 0.912–0.966; P ,
0.0001), as was CNN 1 observer and CNN wbTLG (ICC,
0.952; 95% CI, 0.925–0.969; P , 0.0001). Consequently,
the CNN software performance did not require an observer
to evaluate the images and validate all VOIs.

DISCUSSION

To our knowledge, this was the first study to quantify the
whole-body tumor burden of pediatric lymphoma patients
using CNN and deep learning. Despite the difference in 18F-
FDG biodistribution between children and adults, the CNN-
based software accurately delineated abnormal regions. The
CNN-based software optimized the working time, was
extremely fast, and performed better than the semiquantita-
tive software in calculating whole-body tumor burden.

The CNN-based software allows a review of the VOIs
provided automatically (i.e., VOIs can be added manually or
incorrect ones deleted). Ultimately comparison of the CNN-
based software with and without the observer’s review of
the VOIs rendered the same metrics. However, the time
spent determining the whole-body tumor burden metrics by
the semiautomatic software was longer, because it depends
primarily on the extent of the disease. The semiautomatic
quantification does not allow preselection of VOIs by the
operator before creating the definitive findings and thus does
not distinguish diseased areas from physiologic areas, creat-
ing many VOIs that overload the program.
On the other hand, quantifying the whole-body tumor bur-

den through CNN-based software was significantly faster,
with and without the observer reviewing the VOIs. Impres-
sively, when we compared quantification of the whole-body
tumor burden on the CNN-based software (without observer
interference) with the semiautomatic software and CNN-based
software with observer interference, CNN-based software
without the interference of the observer was significantly
faster and just as precise. CNN-based software took as little
as 20 s to calculate the patient’s entire tumor burden, with-
out the need to review the VOIs (Figs. 4 and 5).
However, there were some limitations. It was not possible

to show whether the measurements predicted by the CNN-
based software could be applied to our patient cohort to predict
prognosis and response evaluation. Most (78.4%) of the
patients had Hodgkin lymphoma, and there were only 2 deaths;
therefore, it was not possible to determine overall survival. A

TABLE 2
Time Spent Quantifying Whole-Body Tumor Burden Metrics on Semiautomatic Software and CNN

Software With and Without Observer Input

Time (s)

Variable n Mean SD Minimum Median Maximum P

Semiautomatic 76 1,301.3 863.5 198.0 1,107.0 3,724.0 ,0.0001
CNN 1 observer 76 221.1 204.4 31.0 155.0 1,176.0
CNN 76 19.6 8.0 11.0 17.0 50.0

TABLE 3
Correlation of Whole-Body Tumor Burden Metrics on Semiautomatic Software and CNN-Based Software With and Without

Observer Input in 76 Patients

Variable Mean SD Min Median Max ICC 95% CI P

MTV 0.960 0.942–0.974 ,0.0001
Semiautomatic 242.8 205.9 4.6 149.0 772.6
CNN 1 observer 254.8 212.8 4.1 178.3 778.3
CNN 234.8 206.9 11.7 147.6 784.4

TLG 0.963 0.947–0.975 ,0.0001
Semiautomatic 1,626.4 1,674.6 50.0 894.7 6,963.1
CNN 1 observer 1,647.3 1,685.8 50.1 902.1 5,963.4
CNN 1,647.7 1,811.2 31.0 871.3 8,218.6

Min 5 minimum; Max 5 maximum; ICC 5 intraclass correlation coefficient.
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larger number of patients with
events are required to determine
whether the measurements predicted by
CNN-based software can predict prog-
nosis. Another limitation is that 25%
of the patients were excluded from
analyses because the CNN-based soft-
ware could not recognize areas of meta-
bolically active disease and could not
perform calculation. In such situations,
these patients had to be excluded
because there was no ability to compare
CNN quantification with manual or
semiautomatic quantification. The CNN
software we tested was not initially
designed or validated to quantify spe-
cifically pediatric patients but, even
so, performed quite well. These exclu-
sions were caused by either the wrong
lesion being segmented or lesions
being missed. For example, small
lymph nodes with mild 18F-FDG
uptake were excluded; extensive brown
fat was erroneously included as lym-
phomatous infiltration; extensive dif-
fuse bone marrow infiltration (5/12
patients) was missed; and radiopharma-
ceutical extravasation sites and bladder
catheter were erroneously included.
Most likely, with further CNN and
deep-learning development and specific
training in pediatric patients regarding
differentiation of normal biodistribution
from cancer tissue, failure rates will
decrease.
CNN-based software with CNN and

deep learning still requires the input
of the observer (26–28). In 25% of
the patients, CNN could not depict the
correct neoplastic tissue or added non-
neoplastic tissue; thus, quantification
had to be excluded because the soft-
ware was not performing the calcula-
tions. Therefore, errors and failure to
detect proper tissue will occur even in
CNN and DL software, arguing in favor
of the observer input. Most likely, the
largest errors may be associated with
unsupervised quantification.

CONCLUSION

CNN-based quantification of whole-
body tumor burden in pediatric lym-
phoma patients is an emerging field.
Determination of whole-body tumor

FIGURE 4. Baseline staging 18F-FDG PET/CT of Hodgkin lymphoma. (A) Maximum-
intensity projection reveals mediastinal hypermetabolic bulky mass and extensive infiltra-
tion of cervical lymph nodes, abdominal lymph nodes, and spleen. (B) Semiautomatic
quantification reveals semiautomatic wbMTV of 548 and semiautomatic wbTLG of 5,238;
time spent calculating was 15 min. (C) CNN whole-body tumor burden quantification
demonstrates similar metrics: CNN wbMTV of 570 and CNN wbTLG of 5,213, but time
spent calculating was significantly less (14 s). CNN software excludes focal areas of
physiologic uptake such as right ureter and includes areas of mild uptake such as left hilar
lymph node.

FIGURE 5. 18F-FDG PET/CT of patient with Hodgkin lymphoma. (A) Maximum-intensity
projection reveals mediastinal hypermetabolic bulky mass and cervical, axillary, and
inguinal nodes. (B) Semiautomatic VB20 whole-body tumor burden quantification reveals
MTV of 194 and TLG of 1,007; time spent calculating these metrics was 30 min because
of extent of lesions and need to exclude multiple areas of physiologic uptake. (C) CNN
whole-body tumor burden quantification demonstrates similar metrics: MTV of 200 and
TLG of 968. However, time spent calculating was significantly less (36 s). CNN software
excludes physiologic areas with high uptake such as heart and includes lymph nodes
with less uptake adjacent to heart.
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burden using CNN-based software is extremely fast and fea-
sible in clinical practice in pediatric lymphoma patients. CNN-
based software requires CNN and deep-learning development
and specific training in pediatric patients, as well as the input of
the observer to minimize failure rates. Tumor burden should be
evaluated in most if not all tumors and age groups for therapy
purposes.

DISCLOSURE

The whole-body metrics were calculated using a loaned
Siemens device equipped with a software based on deep
CNN (Syngovia VB50).
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KEY POINTS

QUESTION: Will the use of CNN promote fast and reliable
quantification data regarding whole-body metabolic tumor
burden in 18F-FDG PET/CT pediatric lymphoma patients?

PERTINENT FINDINGS: Quantification of whole-body
metabolic tumor burden using CNN correlates strongly
with semiautomatic quantification (ICC, 0.993; 95% CI,
0.98920.996; P , 0.0001).

IMPLICATIONS FOR PATIENT CARE: In addition to
reliable data, implementation of CNN quantification tools
in clinical practice may be able to quickly and accurately
deliver prognostic information for better patient
management.
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