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Although reference ranges for 99mTc thyroid percentage uptake
vary, the seemingly intuitive evaluation of thyroid function does
not reflect the complexity of thyroid pathology and biochemical
status. The emergence of artificial intelligence in nuclear medicine
has driven problem solving associated with logic and reasoning,
warranting reexamination of established benchmarks in thyroid
functional assessment. Methods: This retrospective study of 123
patients compared scintigraphic findings with grounded truth
established through biochemistry status. Conventional statistical
approaches were used in conjunction with an artificial neural net-
work to determine predictors of thyroid function from data fea-
tures. A convolutional neural network was also used to extract
features from the input tensor (images). Results: Analysis was
confounded by subclinical hyperthyroidism, primary hypothyroid-
ism, subclinical hypothyroidism, and triiodothyronine toxicosis.
Binary accuracy for identifying hyperthyroidism was highest for
thyroid uptake classification using a threshold of 4.5% (82.6%),
followed by pooled physician interpretation with the aid of uptake
values (82.3%). Visual evaluation without quantitative values
reduced accuracy to 61.0% for pooled physician determinations
and 61.4% classifying on the basis of thyroid gland intensity rela-
tive to salivary glands. The machine learning (ML) algorithm pro-
duced 84.6% accuracy; however, this included biochemistry
features not available to the semantic analysis. The deep learning
(DL) algorithm had an accuracy of 80.5% based on image inputs
alone. Conclusion: Thyroid scintigraphy is useful in identifying
hyperthyroid patients suitable for radioiodine therapy when using
an appropriately validated cutoff for the patient population (4.5%
in this population). ML artificial neural network algorithms can be
developed to improve accuracy as second-reader systems when
biochemistry results are available. DL convolutional neural network
algorithms can be developed to improve accuracy in the absence
of biochemistry results. ML and DL do not displace the role of the
physician in thyroid scintigraphy but can be used as second-reader
systems to minimize errors and increase confidence.
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In 1967, Atkins and Richards (1) evaluated the potential
role of 99mTc-pertechnetate in evaluating thyroid function
as an alternative to sodium iodide with 131I on the basis that
99mTc uptake in the thyroid reflects the gland’s trapping
function. This landmark work used a probe detector rather
than g-camera imaging for the uptake calculation. A small
number of hypothyroid patients were included, and all had
percentage uptakes below 0.5%. Only 2 of 15 hyperthyroid
patients fell below 4%, whereas 4 of 133 euthyroid patients
had uptake above 4%. Thus, a cutoff for normality was set
at 0.4%–4.0% to provide 87% accuracy in hyperthyroid-
ism, 97% accuracy in euthyroidism, and 100% accuracy in
hypothyroidism.
Later work, in 1973, by Maisey et al. (2) used a g-cam-

era, pinhole collimation, and interfaced computer to gener-
ate regions of interest for calculation of 99mTc-pertechnetate
uptake in the thyroid. Uptake was 0.2%–3.6% in euthyroid
patients, 0.3%–6.2% in the presence of a goiter, 2.8%–8.8%
in hyperthyroidism, and 0.1%–0.3% in hypothyroidism,
leading to establishment of a reference range of 0.3%–3.4%.
More recently, 99mTc-pertechnetate uptake in euthyroidism
was characterized in the range of 0.4%–1.7% in 47 clinically
normal patients (3). It is widely acknowledged that reference
values change with geography and time, particularly in rela-
tion to iodine deficiency (4). Although widespread use of
international standards is common (0.5%–4.5% for exam-
ple), these values may not reflect either the technique used
(probe vs. g-camera) or population characteristics (e.g.,
iodine deficiency). In Namibia, investigators found the refer-
ence range to be 0.15%–2.14% (4) although the study
included only 76 patients and all were euthyroid. A U.K.
study (5) used 60 euthyroid patients to estimate the local ref-
erence range as 0.2%–2.0%.
Although reference ranges for percentage uptake vary, the

method for calculation of thyroid function on 99mTc scintig-
raphy also varies (6). A seemingly intuitive evaluation of
thyroid function has also been used as a visual evaluation of
thyroid activity relative to salivary gland activity (Fig. 1).
Such an evaluation does not reflect the complexity of thyroid
pathology and biochemical status. When the bulk of patients
are euthyroid or hyperthyroid, this simplification is intuitive,
but it fails to accommodate subclinical hyperthyroidism,
which can produce a low thyroid accumulation of 99mTc;
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triiodothyronine (T3) toxicosis, which can have high or low
99mTc uptake; subclinical hypothyroidism, which can have
elevated or normal 99mTc accumulation; and primary hypo-
thyroidism, which can have normal or elevated 99mTc accu-
mulation. Thus, the accuracy of 99mTc uptake may be more
dependent on the pathologic cross section of patients than
on the technique itself.
The emergence of artificial intelligence in nuclear medi-

cine has driven problem solving associated with logic and
reasoning (7,8). Developments in machine learning (ML)
and deep learning (DL) provide valuable research tools, par-
ticularly for image segmentation and interpretation (9). The
artificial neural network (ANN) provides the backbone for
both ML and DL algorithms. The ANN relies on input of
specific data (features) and generally refers to ML. More
complex ANNs can produce deep architectures (a high num-
ber of layers and nodes) and refers to DL. Deep ANNs are
generally associated, in medical imaging, with convolutional
neural networks (CNN) that use convolution and pooling
layers to extract features from input tensors (images) (9,10).
Although there have been historical uses of neural networks
to classify thyroid-based ophthalmologic conditions and
evaluate in vitro laboratory tests, it is only recently that DL
approaches have been applied to thyroid scintigraphy. Using
SPECT thyroid scintigraphy, 3 DL models based on Alex-
Net, VGGNet, and ResNet architectures trained on 1,430
clinical studies were modeled and compared with residents
in nuclear medicine (11). Although the investigators con-
cluded that DL approaches performed well in thyroid
scintigraphy, the role of DL might be limited to assisting the
physician in training rather than having any specific clinical
utility. The algorithms marginally outperformed first-year
residents but did not perform as well as second-year resi-
dents, let alone experienced physicians. Concurrent use of
the DL approaches improved the performance of residents
on the order of 5% and reduced reporting time. Nonetheless,
there is a need to explore potential clinical and research ap-
plications, and the less complex nature of planar thyroid

scintigraphy may be better suited to DL
approaches. The performance of these
algorithms was enhanced by a sanitized
dataset with a case population com-
prising healthy individuals (175), pat-
ients with Graves disease (834), and
patients with subacute thyroiditis (421).
The 3 DL architectures reported a high
degree of recall for subacute thyroid-
itis, poor accuracy for normality, and
moderate accuracy for Graves dis-
ease (11).
The aim of this investigation was to

correlate each of the following with
biochemical status and compare per-
formance: percentage uptake of 99mTc,
visual correlation of thyroid activity in

the thyroid, ML algorithms using an ANN, and DL approaches
using a CNN.

MATERIALS AND METHODS

The study retrospectively analyzed 123 patients (90.2% female),
with a mean age of 35 y (range, 10–70 y). The mean intravenous
dose of 99mTc was 153.4 MBq. 99mTc-based thyroid uptake was
determined using background-corrected thyroid regions of interest
and a measured standard. All calculations were decay-corrected
and accounted for residual dose in the syringe after injection. The
extracted image features included both background-corrected and
non–background-corrected total thyroid, left-side and right-side
area (cm2), counts, and counts per pixel. The ratio of the right lobe
to the left lobe for area (cm2), counts, and counts per pixel was
also determined with and without background correction. Addi-
tionally, the ratio of thyroid count to background count for total
thyroid, right lobe, and left lobe was determined (trapping index).
The dose relative to the total count was also calculated, and visual
classification of thyroid activity relative to the salivary glands was
recorded. Biochemical features included the levels of free thyroxine
(T4) (pmol/L), free T3 (pmol/L), and thyroid-stimulating hormone
(mIU/mL). The biochemical status of the patient was determined
(Table 1) and was further stratified as ternary (hypothyroid, euthy-
roid, or hyperthyroid) or binary (hyperthyroid or not hyperthyroid)
(1–6,12,13). Other imaging features were also recorded (e.g., hot or
cold nodule and multinodular goiter). Only 96 patients had both
imaging features and biochemical status available. The investiga-
tion was approved by the institutional ethics committee.
Conventional statistical analysis was undertaken using JMP

software (version 15.2.1; SAS Institute). The statistical signifi-
cance was calculated using x2 analysis for nominal data and the
Student t test for continuous data. The Pearson x2 test was used
for categoric data with a normal distribution, and the likelihood
ratio x2 test was used for categoric data without a normal distribu-
tion. F test ANOVA was used to determine statistically significant
differences within grouped data. A P value of less than 0.05 was
considered significant. Interobserver correlation was evaluated
with x2 analysis, and interobserver reliability was measured using
the Cohen k-coefficient.
The data were also evaluated using an ANN (Neural Analyser,

version 2.9.5; Artificial Intelligence Techniques, Ltd.). There were

FIGURE 1. Intuitive, but sometimes inaccurate, visual evaluation of thyroid status rela-
tive to salivary gland activity. (Left) Salivary gland activity exceeding thyroid gland activity
suggests hypothyroidism. (Middle) Salivary gland activity and thyroid gland activity being
similar (within same scale) suggests euthyroidism. (Right) Salivary gland activity not being
apparent relative to thyroid activity suggests hyperthyroidism. All images were obtained
with 99mTc-pertechnetate using high-resolution, parallel-hole imaging.
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42 input variables in 123 patients (instances) using a binary classi-
fication of hyperthyroid or euthyroid. A 50:25:25 split of 96 valid
instances (excluded missing biochemistry data) was used for train-
ing, selection, and testing. The initial network architecture included
16 scaling layer inputs and 3 hidden layers of 6, 4, and 3 nodes,
using a logistic activation function (defines the output of each node
based on its input) for a single probabilistic layer (binary). The
weighted squared error method was used to determine the loss
index, and the neural parameter norm was used for the regulariza-
tion method. A quasi-Newtonian training method was applied
using gradient information to estimate the inverse Hessian matrix
for each iteration of the algorithm (no second derivatives). The
loss function associated with the training phase estimates the error
associated with the data that the neural network observes.
A single anterior neck image for the 96 patients was evaluated

by 3 independent expert physicians masked to other image and
biochemical features. On the basis of the visual appearance, each
scan was recorded as euthyroid, hypothyroid, or hyperthyroid. On
completion of the stratification, each physician reevaluated the ter-
nary status, with the visual inspection supplemented by the calcu-
lated thyroid uptake (%). The physician rating was determined by
majority group consensus.
Individual, nonannotated, anterior neck images representative of

each patient were evaluated using a CNN classifier (Deep Learning
Toolkit Deep Network Designer App in MATLAB, version
R2020b; MathWorks). Given the lack of discriminatory power
of either visual evaluation or thyroid uptake quantitation using
various cutoffs to identify hypothyroidism, the CNN classifier
was designed to identify hyperthyroidism or no hyperthyroidism
(euthyroid and hypothyroid). Given the lack of complexity in the
image data, the architecture used for the CNN was initially mod-
eled on a binary version of AlexNet with 25 layers but optimized
using a model that resembled the VGG-19 CNN architecture with a
binary output and 30 layers (Table 2; Fig. 2). All patient files were
trained and validated 3 times (70:30 random data split) for each of
3 image types; white on black gray scale, black on white gray scale,
and the magnitude spectrum of the Fourier transformation of

each image (Fig. 3). Specific parameters included an ADAM (adap-
tive movement estimation) stochastic gradient descent optimizer
algorithm, an initial learn rate of 0.001, a maximum of 50 epochs
(1 epoch5 1 iteration), and randomization with each epoch.
Situation analysis was undertaken using the confusion matrix for

classifier prediction, including true-positives (TPs), false-positives
(FPs), true-negatives (TNs), and false-negatives (FNs). Several per-
formance indicators can be gleaned from the confusion matrix,
including precision ( TPs/[TPs1 FPs]), recall (TPs/[TPs1 FNs]),
accuracy ([TPs1 TNs]/[TPs1 TNs1 FPs1 TNs]), and F1 score
(23 TPs/[23 {TPs1 FPs1 FNs}]).

RESULTS

Statistical Analysis
For the 123 patients, the mean thyroid uptake was 4.4%

(95% CI, 3.3%–5.5%), with a median of 2.2% (Table 3).
Among the visual findings, 9 patients had increased uptake
associated with primary hypothyroidism, 22 had increased
uptake because of Graves disease, 9 had multinodular goi-
ters, 2 had nodular thyroids, 28 had a normal morphology,
3 had goiters, 11 had reduced or absent uptake, 7 had autono-
mous glands with contralateral suppression (6 on the right), 24
had cold nodules (16 on the right), and 8 had hot nodules (4 on
the right). Table 4 summarizes other key demographic data.
The mean age of hypothyroid patients (48.0 y) was statis-

tically higher than that for biochemically euthyroid patients
(33.7 y) (P 5 0.041) but not for hyperthyroid patients
(36.7 y). There was also a weak positive correlation between
age and thyroid size (P , 0.001; R2 5 0.117). No other
statistically significant relationships were noted for patient
age. Men demonstrated a statistically higher mean thyroid
area (48.5 cm2) than women (32.2 cm2) (P 5 0.003). There
was also a statistically significant difference in the biochem-
ical status (P 5 0.019), with a disproportionately high

TABLE 1
Biochemical Stratification of Patient Studies and Findings (1–6,12,13)

Free T3
(2–7 pmol/L*)

Free T4 (12–30
pmol/L*)

Thyroid-stimulating
hormone

(0.45–4.5 mIU/mL*) Biochemical status 99mTc uptake (%)

Comment on
uptake reference

range

High High Low Hyperthyroidism .4.5 0% FN rate
Normal Normal Low Subclinical

hyperthyroidism
,4.5 including

,0.45 or absent
0% TP, comprised

FN or FP
hypothyroidism

High Normal Low T3 toxicosis .4.5 or ,0.45 FP hypothyroidism
Normal High Low Thyroiditis No cases
Low Low Low Secondary

hypothyroidism
No cases

Normal Normal High Subclinical
hypothyroidism

.0.45 but ,4.5 100% FN

Low or normal Low High Primary
hypothyroidism

.0.45 and in over
50% of cases
.4.5

100% FN

Normal Normal Normal Euthyroid ,4.5% 9% FP rate
(6% hyperthyroid,
3% hypothyroid)

*Reference range.
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Input tensor

19x19x128
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Process order for each grouping
of 2 processes between the
neural networks

FIGURE 2. CNN architecture. 2D52-dimensional; ReLU5 rectified linear unit.

TABLE 2
CNN Architecture, Activations, and Parameters

Layer Name Activations Parameters

1 Tensor input layer [725,725,3]
2 2D convolution layer [239,239,64] Weights [11,11,3,64], bias [1,1,64]
3 Batch normalization [239,239,64] Offset and scale [1,1,64]
4 ReLU layer [239,239,64]
5 Max pooling layer [119,119,64] Size [3,3], stride [2,2], padding [0,0,0,0]
6 2D convolution layer [40,40,128] Weights 5,5,64,128], bias [1,1,128]
7 Batch normalization [40,40,128] Offset and scale [1,1,128]
8 ReLU layer [40,40,128]
9 Max pooling layer [19,19,128] Size [3,3], stride [2,2], padding [0,0,0,0]
10 2D convolution layer [19,19,256] Weights [3,3,128,256], bias [1,1,256]
11 Batch normalization [19,19,256] Offset and scale [1,1,256]
12 ReLU layer [19,19,256]
13 Max pooling layer [9,9,256] Size [3,3], stride [2,2], padding [0,0,0,0]
14 2D convolution layer [9,9,192] Weights [3,3,256,192], Bias [1,1,192]
15 Batch normalization [9,9,192] Offset and scale [1,1,192]
16 ReLU layer [9,9,192]
17 Max pooling layer [4,4,192] Size [3,3], stride [2,2], padding [0,0,0,0]
18 2D convolution layer [4,4,192] Weights [3,3,256,192], bias [1,1,192]
19 Batch normalization [4,4,192] Offset and scale [1,1,192]
20 ReLU layer [4,4,192]
21 Max pooling layer [1,1,192] Size [3,3], stride [2,2], padding [0,0,0,0]
22 Fully connected layer [1,1,192] Weights [192,192], bias [192,1]
23 ReLU layer [1,1,192]
24 Dropout layer [1,1,192] 0.5
25 Fully connected layer [1,1,86] Weights [86,192], bias [86,1]
26 ReLU layer [1,1,86]
27 Dropout layer [1,1,86] 0.5
28 Fully connected layer [1,1,2] Weights [2,86], bias [2,1]
29 Softmax layer [1,1,2]
30 Classification layer Cross entropy loss function

2D 5 2-dimensional; ReLU 5 rectified linear unit.

146 JOURNAL OF NUCLEAR MEDICINE TECHNOLOGY � Vol. 50 � No. 2 � June 2022



representation of hyperthyroidism for men and a lower
euthyroid rate. Given the lower representation of men in the
thyroid scan population, this observation may reflect lower
presentation rates for men in the absence of markedly abnor-
mal thyroid function driving more pressing symptoms. No
other statistically significant relationships were noted for
patient gender or patient dose (MBq).
There was no statistically significant correlation between

thyroid uptake and right-lobe–to–left-lobe ratio (P5 0.672),

thyroid area (P5 0.166), or background
counts per pixel (CCP) (P5 0.416).
The increase in thyroid uptake associ-
ated with increasing total counts
(P, 0.001; R25 0.458) and total CPP
(P, 0.001; R25 0.356) was expected.
There were also statistically signifi-
cant relationships between increasing
thyroid uptake and increasing thyroid-
to-background ratios (P, 0.001; R2 5
0.376). The mean thyroid uptake was
statistically higher (P, 0.001) when
the scan showed—relative to appro-
priately thresholded thyroid activity—
no salivary activity (9.1%) than when it
showed—relative to faint thyroid activ-
ity (2.5%)—salivary activity less than
thyroid activity (1.7%), salivary activ-
ity equal to thyroid activity (1.1%), or
salivary activity greater than thyroid
activity (0.4%). A positive correlation
between thyroid uptake and both free
T4 (P, 0.001; R25 0.351) and free
T3 (P, 0.001; R25 0.365) was noted;
however, no correlation was noted
between thyroid uptake and thyroid-
stimulating hormone (P5 0.695; R25

0.002).
Biochemical status demonstrated a

statistically significant difference (P, 0.001) in mean thy-
roid uptake stratified as hyperthyroid (9.5%; 95% CI,
7.1%–12.0%), hypothyroid (4.0%; 95% CI, 1.3%–6.7%),
and euthyroid (2.5%; 95% CI, 0.9%–4.2%). Hypothyroid
studies had a higher mean thyroid uptake than euthyroid
studies because of the primary hypothyroidism cases.
Excluding primary hypothyroidism, there was no statisti-
cally significant difference in thyroid uptake between hypo-
thyroidism and euthyroidism, or between hypothyroidism

FIGURE 3. Three example patients (top, middle, and bottom) with black on white (left),
white on black (center), and magnitude spectrum from Fourier transformation (right) used
as inputs for CNN.

TABLE 3
Ternary Classification of Thyroid Function Based on Various Published Reference Ranges

Reference range Euthyroid Hyperthyroid Hypothyroid Reference

0.45%–4.5% 67.5% 26.8% 7.7% 6
0.4%–1.7% 35.0% 61.0% 4.0% 3
0.4%–4.0% 65.0% 31.0% 4.0% 4
0.3%–3.4% 57.7% 38.2% 4.1% 2
0.2%–2.0% 43.1% 52.8% 4.1% 5
Biochemical status 53.1% 27.1% 19.8%* 11
Salivary classification 44.8% 50.0% 5.2% —

Physician visual rating 51.0% 43.8% 5.2% —

Physician rating with uptake value 64.6% 29.2% 6.3% —

*15.6% were hypothyroid without suppression of uptake (2.1% autonomous, 2.1% secondary hypothyroidism, 11.5% primary
hypothyroidism, and 4.2% subclinical hypothyroidism).
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and subclinical hyperthyroidism or suppressed hyperthy-
roidism. Although 4.5% is the cutoff reflecting 100% sensi-
tivity for standard hyperthyroidism, clinical hyperthyroid-
ism with suppression and subclinical hyperthyroidism (both
biochemically) are not identified by this reference range.
The optimized cutoff range for thyroid uptake against

biochemical status was 0.45%–4.5%, although the lower
end of this range is a poor discriminator for hypothyroidism
against euthyroidism. For biochemical hyperthyroidism,
70.8% of cases had an uptake greater than 4.5% whereas
29.3% fell below 4.5%. Of those below 4.5%, 100% had
biochemically subclinical hyperthyroidism or T3 toxicosis.
Of patients with true hyperthyroidism biochemically, 100%
had uptake above 4.5%. Conversely, 27.8% of hypothyroid-
ism cases had uptake above 4.5%. There were no hypothy-
roidism cases that had uptake values below the 0.45%
cutoff (all values below this were hyperthyroid or euthyroid
biochemically). In the biochemically euthyroid range, only
6% had an uptake above 4.5%, and only 2% had an uptake
below 0.45%.
Using the ternary classification, a thyroid uptake above

4.5% had a sensitivity of 70.8% and a specificity of 88.2%

for detecting hyperthyroidism. A thyroid uptake below
0.45% had a sensitivity of 0% and specificity of 95.9% for
hypothyroidism (Fig. 4, left). A broader biochemical classifi-
cation of hyperthyroidism saw the sensitivity of the 4.5%
cutoff reach 100%, with a specificity of 88.2% (Fig. 4, right).
On the basis of the ternary biochemical status, there was

a statistically higher thyroid area for hyperthyroidism
(40.7 cm2) than for hypothyroidism (29.5 cm2) or euthyr-
oidism (33.0 cm2) (P5 0.049). With reference to Figure 1,
the scintigraphic appearance of thyroid activity relative to
salivary gland activity correctly identified 70.3% of hyper-
thyroid studies, 0% of hypothyroid studies, and 62.7% of
euthyroid studies (Table 5). Excluding subclinical hyperthy-
roidism and T3 toxicosis, 94.1% of hyperthyroidism studies
were identified using the visual criteria. Table 5 also pro-
vides an outline of TP rate (recall) for each set of cutoffs
against the biochemical status.

ML
There were 42 input variables in 96 patients (instances)

using a binary classification of hyperthyroid or euthyroid.
The heat-map correlation matrix identified several redundant

TABLE 4
Key Variables

Variable Mean 95% CI

Total count ratio of right-lobe activity to left-lobe activity 1.5 1.03–2.02
CPP ratio of right-lobe activity to left-lobe activity 1.29 0.98–1.60
Area 33.8 cm2 31.1–36.5
Size, right 3092 pixels 2,848–3,340
Size, left 2937 pixels 2,662–3,212
Ratio of thyroid to background 4.06 3.43–4.69

Right 4.01 CPP 3.49–4.52
Left 4.08 CPP 3.28–4.89

Ratio of dose to total counts 4.85 3.44–6.26
FT4 21.1 pmol/L 18.1–24.2
FT3 7.1 pmol/L 5.1–9.1
Thyroid-stimulating hormone 4.2 pmol/L 2.3–6.1

Biochemical statusBiochemical status

Hyperthyroid Hypothyroid Euthyroid
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FIGURE 4. (Left) Ternary biochemical status classification against thyroid uptake. (Right) Broader biochemical status classification
against thyroid uptake. Horizontal line represents overall mean, and diamonds represent class mean and 95% CIs.
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variables, and the highest correlation scores were associated
with thyroid-stimulating hormone (0.888), appearance of
salivary glands on scans (0.627), free T4 (0.575), percentage
uptake (0.501), and free T3 (0.491), consistent with the con-
ventional statistical analysis. The network architecture
included 16 scaling layer inputs and 3 hidden layers of 6, 4
and 3 nodes. The initial value of the training loss was
1.5473, and the final value after 105 iterations was 0.0172.
The initial value of the selection loss was 1.5570, and the
final value after 105 iterations was 1.1895.
A growing-inputs method was used to calculate the corre-

lation for every input against each output in the dataset.
Beginning with the most highly correlated inputs, progres-
sively decreasing correlated inputs were added to the
network until the selection loss increased. The final archi-
tecture of the neural network reflected the optimized subset
of inputs with the lowest selection loss. In this case, the
selection loss and the training loss identified the optimal
number of inputs to be 4, with the training loss optimized at
0.0298 and the selection loss being less than 0.0001. The
final architecture was 4 scaling-layer inputs; 3 hidden layers
of 6, 4, and 1 nodes; an unscaling layer; and a single binary
probabilistic layer (Fig. 5).
Several metrics were used to test the final architecture

using a subset of the original patient data. Receiver-opera-
tor-characteristic analysis demonstrated an area under the
curve of 0.933. This correlated with a sensitivity of 100%, a

specificity of 80%, and a classification accuracy of 0.846.
These results were consistent with scores of 0.60 for preci-
sion, 0.75 for F1 score (harmonic mean of sensitivity and pre-
cision), 0.693 for the Matthew correlation (correlation
between targets and outputs), and 0.8 for the Youden index
(probability of a correct decision as opposed to guessing).
The cumulative gain analysis demonstrates the benefit
of using the developed model over a random guess. On the
graph in Figure 6, the positive cumulative gain shows the
percentage of positive instances found (y-axis) against the
percentage of population (x-axis). Similarly, the negative
cumulative gain shows the percentage of negative instances
found against the percentage of population. The straight line
represents a random classifier. The broader the separation, the
better the predictive model. Since the instance ratio provides
maximum separation (maximized percentage of positive and
negative instances), an instance ratio of 0.40 has a maximum
gain score of 0.8. Specifically, but individually, hyperthyroid-
ism is predicted by 99mTc uptake above 5.7%, free T4 below
20 pmol/L or above 34 pmol/L, free T3 above 9.8 pmol/L,
and thyroid-stimulating hormone below 5.5 mIU/mL. In com-
bination, these scaled and weighted input features of the neu-
ral network can be expressed mathematically, enhancing the
collective predictive capability.

TABLE 5
Ternary Classification of Thyroid Function Based on Recall Against Biochemical Status

Reference range Euthyroid Hyperthyroid* Hypothyroid Accuracy†

0.45%–4.5% 71.4% 66.6% (100%) 0% 82.6%
0.4%–1.7% 49.0% 74.1% (94.1%) 0% 51.0%
0.4%–4.0% 86.3% 63.0% (94.1%) 0% 77.1%
0.3%–3.4% 74.5% 63.0% (94.1%) 0% 68.8%
0.2%–2.0% 58.8% 74.1% (94.1%) 0% 59.4%
Salivary classification 62.7% 70.3% (94.1%) 0% 61.4%
Physician rating 72.5% 63.0% (89.5%) 0% 61.0%
Physician rating with uptake 88.2% 70.3% (100%) 0% 82.3%

*Data in parentheses exclude subclinical hyperthyroidism and T3 toxicosis.
†Binary accuracy for reference to Table 6.
Accuracy is also provided for binary classification.

Binary

Uptake

FT4

FT3

TSH

FIGURE 5. Final architecture of trained and validated neural
network. TSH5 thyroid-stimulating hormone.

FIGURE 6. Cumulative gain chart demonstrating maximum sep-
aration of positive and negative curves to provide cumulative gain
score of 0.8 and instances ratio of 0.4 (arrow).
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Preliminary network development demonstrated overfit-

ting beyond 30 iterations (epochs); therefore, the maximum
epoch number was reset to 30. The results of the triplicated
training and validation passes are summarized in Table 6.
The variations in validation accuracy reflect the smaller data-
set and the random assignment of cases to training and val-
idation. No statistically significant differences (grouped F
test) were noted between training and validation accuracy
for different types of input tensors (P5 0.161 for training
accuracy and 0.531 for validation accuracy) despite the
higher accuracy for white on black and the lower accuracy
for the magnitude spectrum. A direct comparison of white
on black against the magnitude spectrum showed P values
of 0.068 for training accuracy and 0.280 for validation
accuracy.

DISCUSSION

Although thyroid scintigraphy is a well-established tech-
nique for the assessment of thyroid function, opinions vary
on the role in identifying low versus high thyroid uptake to
guide radionuclide therapy. Thyroid scintigraphy is useful
in the evaluation of hyperthyroidism to differentiate causes
and guide therapy (14). Although the specific scintigraphic
patterns associated with thyroid pathology do not easily
differentiate the biochemical status of the patient (Fig. 7), scin-
tigraphic imaging does provide information useful in identify-
ing patients suitable for radioiodine therapy (14). Despite
being in widespread use for this purpose internationally,
99mTc-pertechnetate–based thyroid uptake is not considered
suitable in some circles for guiding the therapeutic dosage of

radioiodine (14). Consistent with the observations of this
study, scintigraphy has a limited role in hypothyroidism (15).
The challenges and limitations of thyroid scintigraphy are

highlighted by poor agreement of physician interpretation.
However, with the exclusion of patient history and biochem-
istry results, the physician interpretation is not done under
normal conditions, but for the purpose of this study, the con-
strained interpretation provides a useful benchmark. Using a
thyroid uptake cutoff of 0.45%–4.5%, agreement with phy-
sician interpretation was only 63.5%, and using salivary
gland appearance, agreement was just 53.1%. Agreement
between physicians was not strong, at 59.4%–86.5%, and
agreement with biochemistry-grounded truth ranged from
42.7% to 68.8%. This, combined with the poor prediction
utility of the salivary gland appearance, contradicts the sim-
plicity of thyroid imaging depicted in Figure 1.
Using the ternary classification of euthyroid, hyperthy-

roid, and hypothyroid, a thyroid uptake above 4.5% had
a sensitivity of 70.8% for detecting hyperthyroidism and a
specificity of 88.2%. A thyroid uptake below 0.45% had a
sensitivity for hypothyroidism of 0% and a specificity of
95.9%. Specific biochemical classification of hyperthyroid-
ism that excluded T3 toxicosis and subclinical hyperthyroid-
ism improved the sensitivity of the 4.5% cutoff to 100%,
with a specificity of 88.2%. This finding highlights the value
of thyroid uptake with a cutoff of 4.5% in identifying pat-
ients suitable for radioiodine therapy. Given that this goal is
the primary one and that scintigraphy has a limited role in
hypothyroidism in adults, a binary classification (hyperthy-
roidism or no hyperthyroidism) provides a more suitable
evaluation. The value of an appropriate thyroid uptake cut-
off is highlighted in Table 5, which shows that in this

TABLE 6
Triplicate Training and Validation Binary Results (Hyperthyroid or Not Hyperthyroid) for 30-Layer CNN Architecture

Input tensor
Training
accuracy

Training
loss

Validation
accuracy

Validation
loss

Mean validation
accuracy

Binary
accuracy

White on black 82.1% 0.420 75.9% 0.536 80.5%
94.0% 0.225 79.3% 0.602
91.0% 0.218 86.2% 0.414

Black on white 83.6% 0.383 82.8% 0.405 78.2%
80.6% 0.452 72.4% 0.544
91.0% 0.232 79.3% 0.690

Magnitude spectrum 76.1% 0.459 75.9% 0.530 75.9%
74.6% 0.508 72.4% 0.542
85.1% 0.306 79.3% 0.380

Mean 84.2% 0.356 78.2% 0.516
Initial 25-layer CNN 69.0%
Conventional metrics

Normal cutoff, 4.5% 82.6%
Normal cutoff, 4.0% 77.1%
Salivary classification 61.5%
Physician rating 61.0%
Physician rating with uptake 82.3%

Corresponding binary accuracies of best-performing thyroid uptake cutoffs, visual classification against salivary activity relative to
thyroid activity, and physician rating are included for comparison.
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population, binary accuracy was high for a 4.5% cutoff
(82.6%) and for physician interpretation augmented by
uptake value (82.3%) but was low for salivary gland appear-
ance alone (59.4%) and for masked physician interpretation
(61.0%). Indeed, the value and accuracy of 4.5% as the cut-
off are reinforced by the similarity in physician interpreta-
tion with and without the uptake-augmented information.
Although ML was able to demonstrate improved accuracy

to 100%, the algorithm relied on biochemistry not available
for physician interpretation. Indeed, the grounded truth relied
on the additional value of biochemistry insights to physician
insights. In the absence of available biochemistry results, the
ML algorithm relies on uptake alone. Conversely, the physi-
cian interpretation would improve substantially with the addi-
tional insights from biochemistry. In this study, regardless of
the apparent performance results, ML augmentation outper-
formed physician interpretation only because the physician
was masked to the biochemistry results available to the ML
algorithm. Nonetheless, the role of ML is not and should not
be to displace physician reporting but rather to improve accu-
racy by eliminating error. In this instance, the ML algorithm
has been shown to be an accurate second-reader system that
can be automated with minimal cost and resources to identify
hyperthyroid patients suitable for radioiodine therapy.
In contrast to the success of ML algorithm development,

the DL CNN performed more poorly than either the 4.5%
cutoff discriminator or the uptake-augmented physician
interpretation. The best result was achieved using the white-
on-black images (80.5%). Although this result represents
only a marginal decrease in performance compared with
uptake alone (82.6%) and physician interpretation (82.3%),
the CNN was trained on only a single anterior neck image
and had no inputs for either the thyroid uptake percentage or

the biochemistry results. As a result, the comparative perfor-
mance should be considered the physician rating without
uptake values. In this regard, the 80.5% binary accuracy of
the CNNwas superior to the physician interpretation (61.0%)
and the visual classification against salivary gland appear-
ance (61.5%). Although this result does not suggest displace-
ment of physician interpretation, it does indicate that the
accuracy of physician reporting might be improved using the
CNN algorithmwhen biochemistry results are not available.

CONCLUSION

Thyroid scintigraphy is useful in identifying hyperthyroid
patients suitable for radioiodine therapy. Physician interpre-
tation relies on an accurate thyroid function assessment
(uptake) and an appropriately validated cutoff for the patient
population (4.5% in this population). An inappropriate cutoff
significantly undermines accuracy. ML ANN algorithms can
be developed to improve accuracy as second-reader systems
when biochemistry results are available. DL CNN algorithms
can be developed to improve accuracy in the absence of bio-
chemistry results. ML and DL do not displace the role of the
physician in thyroid scintigraphy but can be used as second-
reader systems to minimize errors and increase confidence.
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KEY POINTS

QUESTION: Can ML and DL approaches improve
semantic evaluation of thyroid scintigraphy and uptake in
hyperthyroidism?

PERTINENT FINDINGS: ML algorithms can be developed
to improve accuracy as second-reader systems when
biochemistry results are available. DL CNN algorithms can
be developed to improve accuracy in the absence of
biochemistry results.

IMPLICATIONS FOR PATIENT CARE: ML and DL do not
displace the role of the physician in thyroid scintigraphy
but can be used as second-reader systems to minimize
errors and increase confidence.
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