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A number of goodness-of-fit tests are available to describe 
the statistical behavior of nuclear counting equipment. We 
describe the Lexis' divergence coefficient, the reliability factor, 
the Kolmogrov-Smirnov test, and the chi-square test. Special 
emphasis is placed on simplified calculations of the chi-square 
test. 

Goodness-of-fit tests are used extensively to evaluate 
the statistical behavior of nuclear counting equipment 
(1-3). However, the statistical manipulation required 
often discourages their routine use. The purpose of this 
communication is to compare some of the goodness-of
fit tests that have been proposed and to present simplified 
calculations for the most common test-the chi
square-that are useful to those working with paper and 
pencil as well as those having access to electronic data 
processing. 

Goodness-of-Fit Tests 

Radioactive decay is a random process that is de
scribed mathematically by the Poisson distributions. 
This randomicity is easily demonstrated by taking a series 
of replicate counts of a radioactive source with a nuclear 
detector equipped with a scaling unit. It has been 
observed that r~plicate counts of the same source do not 
yield identical count rates. If one assumes that the normal 
variation of the equipment response is very much smaller 
than the randomicity of radioactive decay, then a number 
of statistical tests can be used to test the hypothesis that 
the observed variation in a series of replicate counts is due 
solely to variations in the emission rate oft he radioactive 
source. These statistical tests are called goodness-of-fit 
tests. 

The goodness-of-fit tests that can be used include 
Lexis' divergence coefficient (4}, the reliability factor 
(2,5), the Kolmogrov-Smirnov test (6), and the chi
square test (1-3). 
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Lexis' divergence coefficient. The Lexis' divergence 
coefficient Q2 has been discussed by Evans (4) and is the 
result of the work by the German economist Lexis. 
Mathematically, it is defined as 

~(X~-X)2 

Q2 = ----=--
nX 

where 

~ = the sum of, 
Xi = the ith observation, 

(I) 

X = the mean value of the observed replicate counts, 
n =the number of the observed replicate counts. 

Remember that the standard deviation S of a series 
of replicate counts is given by the following formulr· 

~(Xi-X)2 

s2 = _ ___; __ .;....___ 
n-1 

Combining Eqs. I and 2, we have 

2 
2 _ n-1 * S 

Q-- -=-· 
n X 

(2) 

(3) 

Since S2 

becomes 
X for a Poisson distribution, the above 

n-1 1/ 
Q2=--=I 

n 

for large n. 

(4) 

We know that as Q2 becomes closer to I we have 
greater confidence that our equipment is working 
satisfactorily, and that as Q2 becomes much larger than I 
we have greater confidence that our equipment is not 
working satisfactorily. Remember that Q2 will become 
larger than I when S2 becomes larger than X; that is, 
when the variation in equipment response between 
replicate counts is greater than can be accounted for by 
the randomicity of radioactive decay. Unfortunately, 
quantitative criteria for establishing the dividing line 
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between satisfactory and unsatisfactory equipment 
performance are not available and this test has never 
gained acceptance as a quality control tool. However, the 
value of Q2 obtained from the sample calculation in Table 
I, i.e., 1.19, is sufficiently close to I so that we would 
conclude that our equipment was working satisfactorily. 

Reliability factor. The reliability factor was in
troduced by J3leuler and Goldsmith (5) and its utility for 
quality control has been further discussed by Prince and 
Schmidt (2). Mathematically, it is defined as 

R.F. = s, = j(x,-X)2 
S,h (n-1) X 

(5) 

where 

S, the observed standard deviation of a group 
of replicate measurements, 

S,h = the theoretical standard deviation. (For a 
Poisson distribution s~h = X.) 

Using the same data from Table I, a sample calcu
lation of the reliability coefficient is given in Table 2. The 
statistical confidence levels for the reliability coefficient 
are given in the Radioiogicai Heaith Handbook (7). 
Again, since the value of the reliability coefficient is 
sufficiently close to I, i.e., S, = S,h, we conclude that our 
instrument is working satisfactorily. 

Kolmogrov-Smirnov test. The use of the Kol
mogrov-Smirnov statistic as a goodness-of-fit test has 
been fully described by Conover (6 ). This test is used as a 
quality control tool in clinical chemistry (8-9), but has 
not been widely used in nuclear technology. The test 
is based on the maximum difference between an assumed 
theoretical cumulative distribution and an observed ex
perimental distribution. 

TABLE 1. Sample Calculatio,n of Lexis' Divergence 
Coefficient for Representative Counting Data 

- {XI-X)' 
XI XI-X {XI-X)' 

nX 

12036 39.H 1584.04 0.0132 
12004 H 60.84 0.0005 
11850 -146.2 21374.44 0.1782 
12152 155.8 2427364 0.2023 
12237 240.8 57984.64 0.4834 
11846 -150.2 22560.04 0.1881 
11901 -95.2 9063.04 0.0755 
11932 -64.2 4121.64 0.0344 
12028 31.8 1011.24 O.OOR4 
11976 -20.2 40R.04 0.0034 

~X,= 119962 ~(X,-X)= 0 ~(X,-X)' ~(X,-X)' 

= 142441.6 nX 
= 1.188 

n = 10 X= 11996.2 :.Q' = 1.19 
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TABLE 2. Sample Calculation of Reliability 
Coefficient for Representative Counting Data 

XI XI-X (XI-X)' 

12036 39.8 1584.04 
12004 7.8 60.84 
11850* 146.2 21374.44 
12152* 155.8 24273.64 
12237* 240.8 57984.64 
11846* -150.2 22560.04 
11901 -95.2 9063.04 
11932 -64.2 4121.64 
12028 31.8 :011.24 
11976 -20.2 408.04 

~X= 119962 ~(X,-X)= o ~<K-X)' = 142441.6 

S, = J:( = 109.5 

s, 125.8 
R.F. = 

109.5 
= 1.15 

TABLE 3. Sample Calculation of Kolmogrov-Smirnov 
Test for Representative Counting Data 

XI 
{XI-X) 

d = IF-F I (X)'h F F 

11846 -1.371 0.085 0.100 0.015 
11850 -1.335 0.090 0.200 0.110 
11901 -0.869 0.194 0.300 0.106 
11932 -0.586 0.278 0.400 0.122 
11976 -0.184 0.427 0.500 0.073 
12004 0.071 0.52R 0.600 0.072 
1202R 0.290 0.614 0.700 0.086 
12036 0.363 0.642 0.800 0.158* 
12152 -1.422 0.924 0.900 0.024 
12237 2.198 0.986 1.000 0.014 

*dm,. = lar~rest value hetween F and F. 

As a didactic example consider again the data 
previously used. In Table 3 the counting data are ranked 
in order from the lowest to the highest value. The column 
headings have the following meanings. 

X, = the ith observation. 

(X,-X) 

(X)I/2 
the fractional standard deviation of the ith 

observation. 
' F = the cumulative expected frequency. For 

this problem we have assumed a Gaussian 
distribution and F is looked up in a table 
of Gaussian frequency distributions in any 
standard statistics book. Remember that 
the Poisson distribution can be described 
by a Gaussian distribution when the num
ber of counts in each observation is large. 

F = the cumulative relative observed frequency. 
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For ten observations, each observation 
increments the cumulative relative ob
served frequency by 0.10. For 20 observa
tions, each observation increments the 
cumulative relative observed frequency by 

, 0.05, etc. 
d =I F-F1 =the absolute value of the difference be

tween F and F. 
' 

The largest value between F and F is called dmax (Table 
3). The value for dmax is compared with critical values 
obtained from standard statistics tables such as is found 
in Conover (6). If the value in the tables is larger than dmax 
for the statistical confidence level chosen, we conclude 
that our equipment is operating satisfactorily. If dmax is 
larger than the values found in the statistical tables, we 
conclude that our equipment is not working satis
factorily. 

The data in Table 3 demonstrate that the equipment is 
working satisfactorily, as the interested reader can 
confirm as an exercise. 

Chi-square test. The chi-square test is perhaps the 
most commonly used goodness-of-fit test used for 
assessing the reliability of nuclear counting equipment. 
However, as previously mentioned in this paper, the 
statistical manipulation required often precludes its 
routine use. One of the primary purposes of this 
communication is to show how this statistic can easily be 
calculated so that its use can be more widely encouraged 
in quality control programs. 

The definition of the chi-square statistic is defined 
mathematically as 

~(Xi-X)2 

chi-square = ----'-----'--
X 

(6) 

where the symbols have all been previously defined. The 
above formulation assumes a validity of the Poisson 
probability distribution wherein the mean value of a 
series of replicate counts is the best estimate of the 
expected value. If the variation of the equipment 
response is substantial, then the value of the chi-square 
calculated from Eq. 6 will exceed the normal bounds 
predicted by the Poisson distribution. Further, if the 
equipment response is too uniform then the value of the 
chi-square calculated from Eq. 6 will be smaller than the 
normal bounds predicted by the Poisson distribution. 
The condition of too uniform a counting rate could 
theoretically occur, for example, when a constant noise is 
fed into the system and the counting instrument does not 
respond to the radioactive source. In the experience of this 
author, the condition of too uniform a counting rate is 
easily recognized without resorting to any statistical tests. 
However, both the upper and lower bounds for the chi
square test have been adapted from Chase and 
Rabinowitz (1) (Table 4). 

The samle calculations of the chi-square shown in 
Table 5 are simple with the use of a programmable 
calculator, but tedious if programs are not available. 
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However, the recent widespread availability and use of 
pocket calculators with hardwired functions for the 
calculation of the mean and standard deviation make an 
alternate formulation of the chi-square useful. Consider 
again the definition of the standard deviationS (Eq.2). A 
simple manipulation of Eq. 2 yields the chi-square value 
in terms of the standard deviation and the mean of a 
series of replicate counts of a radioactive source: 

chi-square 
S2 * (n-1) 

X 
(7) 

Using the data given in Table 5, the interested reader can 
demonstrate, as an exercise, that Eqs. 6 and 7 yield 
identical results. From the data in Tables 4 and 5 we 
conclude, again, that the equipment is working 
sa tisf acto ril y. 

In the event that the analyst has neither a program-

TABLE 4. Critical Values for Chi-Square Test 

Number of 
observations p = 0.98* p = o.got 

3 0.02- 9.21 0.10- 5.99 
4 0.12-11.34 0.35- 7.82 
5 0.30-13.28 0.71- 9.49 
6 0.55-15.09 1.14-11.07 
7 0.87-16.81 1.64-12.59 
8 1.24-18.48 2.17-14.07 
9 1.65-20.09 2.74-15.51 

10 2.09-21.67 3.33-16.92 

*If chi-square miue is between tabuiated vaiues, there is a 98% con
fidence ievei that instrument is working satis(actoriir. 

t1f chi-square vaiue is heMeen tabuiated vaiues, there is a 90% 
confidence ievei that instrument is working sati~(actoriiy. 

TABLE 5. Sample Calculation of Chi-Square 
Test for Representative Counting Data 

XI XI-X (XI-X)' 
(XI-X)' 

X 

12036 39.8 1584.04 0.132 
12004 7.8 60.84 0.005 
11850 -146.2 21374.44 1.782 
12153 155.8 24273.64 2.023 
12237 240.8 57984.64 4.834 
11846 -150.2 22560.04 1.881 
11901 -95.2 9063.04 0.755 
11932 -64.2 4121.64 0.344 
12028 31.8 1011.24 0.084 
11976 -20.2 408.04 0.034 

2X, = 119962 2(X,-X) = o 2(X,-X)2 2(X,-X)2 

= 142441.6 X 
= 11.87 

n = 10 x = 11996.2 Chi-square = 11.87 
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TABLE 6. Multipliers for Converting Range 
to Standard Deviation 

Number of 
observations (N) Multiplier (K) 

2 0.886 
3 0.591 
4 0.486 
5 0.430 
6 0.395 
7 0.379 
8 0.351 
9 0.337 

10 0.325 

TABLE 7. Sample Calculation of Chi-Square 
Test Using Range to Approximate Standard Deviation 

XI Xl 

12237 11996 
12152 11976 
12036 11901 
12028 11850 
12004 11846 

R = 391 N-1 = 9 

X= 11996.2 Chi-square= 12.11 

mabie calculator nor a pocket calculator with the 
requisite functions, a simple approximation using small 
sample statistics can be used that is adequate for most 
circumstances, and the approximation can easily be 
calculated with a simple adding machine or paper and 
pencil. 

When only a few replicate counts are obtained, which 
is the usual practice for routine quality control 
evaluations, the standard deviation can be approximated 
conveniently from the range, i.e., the difference between 
the highest and the lowest value. The multipliers required 
for converting the range into a standard deviation are 
given in Table 6. These multipliers have been abstracted 
from Dixon and Massey (10). Thus, Eq. 7 can be trans
formed as follows: 

chi-square 
(K*R)*(n-1) 

(8) -
X 

where 
R the range, 
K = the multiplier (from Table 6) which converts the 

range into a standard deviation. 

Using the same data as previously used, a sample 
caculation using Eq. 8 is given in Table 7. It is apparent 
that the variation between the two chi-square values from 
Tables 4 and 7 does not make any practical difference. 
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In order to compare the results obtained from either 
Eq. 7 or 8, a portion of our operating experience with a 
single instrument is summarized in Table 8. 

For routine paper and pencil work in calculating the 
chi-square value, it is convenient to standardize on ten 
replicate counts and to round off the multiplier in Table 6 
to I I 3. If a question arises as to the interpretation of a 
particular set of data using this simplified procedure, 
then the more precise calculations can be carried out. In 
the experience of this author, the use of the simplified chi
square calculation based on the range has proven entirely 
adequate. 

Practical Example 

Our routine quality control program calls for a daily 
count of a standard 137Cs source to monitor possible 
changes in instrument sensitivity. The 137 Cs source is 
counted using an energy range of I MeV. In spite of an 
acceptable counting rate with the 137 Cs source, the 
technologists noted that spurious counts were obtained 
when routine blood samples for a blood volume were 
counted for 125I using an energy range of 0.25 MeV. In 
order to differentiate between equipment malfunction 
and errors in sample preparation, a chi-square test was 
performed on both the 1- and 0.25-MeV energy ranges 
(Table 9). Apparently, the equipment was performing 
satisfactorily on an energy range of 1 MeV but not 
satisfactorily on an energy range of 0.25 MeV. 

The service representative was called in for equipment 
repair and it was discovered that the contacts on the 
energy range selector switch were corroded on the 0.25-

TABLE 8. Comparison of Chi-Square Values Obtained 
Using Calculated Standard Deviation with Standard 

Deviation Approximated from Range 

X' using X' using X' using X' using 

Eq. 7 Eq.S Eq. 7 Eq.S 

26.5 27.7 17.8 14.0 
7.1 8.5 4.1 3.6 
9.5 6.4 20.7 17.4 
3.6 5.1 8.8 7.1 

19.5 25.4 8.6 4.4 

TABLE 9. Comparison of Chi-Square Values 
Obtained on Different Energy Ranges 

Before and After Equipment Maintenance 

Energy X' value X' value 
range before after 
(MeV) maintenance maintenance 

0.25 1107 8.64 
1.0 4.58 9.98 
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MeV setting. After the switch was repaired the chi-square 
test was repeated with satisfactory values being obtained 
on both the 1- and 0.25-MeV energy ranges (Table 9). 
Note that cleaning the switch contacts did restore the 
equipment to a satisfactory operating status. 
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