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Our purpose was to develop a fully automatic method to deal
with the presence of high levels of noise interfering with
quantitative analysis of fast, dynamic mercaptoacetyltriglycine
renogram images. Methods: A method based on Legendre
polynomials to fit and filter time–activity curves was proposed.
The method was applied to a renal database that contains
Monte Carlo (MC)–simulated studies and real adult patient data.
Clinically relevant parameters such as relative function, time to
maximum uptake (Tmax), and half-emptying time (T1/2) were
obtained with the proposed method, the 1-2-1 filter (F121)
method recommended in the 2018 guidelines of the European
Association of Nuclear Medicine, and a state-of-the-art com-
mercial software program (Hermes) currently used in routine
nuclear medicine. Results: The root mean squared error be-
tween reference time–activity curves and the same curves with
Poisson noise added was about 2 times lower for the Legendre
method than for F121. The left relative function for MC and
patient data was statistically equivalent for Hermes, Legendre,
and F121 (P , 0.001). For MC studies, the Legendre technique
performed better that the Hermes method regarding the known
values of Tmax (P , 0.05), and the T1/2 determination was
significantly improved (P, 0.05). For patient data, the Legendre
and F121 methods were less influenced by noise in the data
than the Hermes method, particularly for T1/2. Conclusion: In
dynamic nuclear medicine imaging, Legendre polynomials ap-
pear to be a promising, fully automatic noise-removal tool that
is routinely applicable, accurate, and robust.
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The human body is characterized by a wide variety
of dynamic processes with a large spectrum of durations.
Nuclear medicine allows the imaging of some of these

processes (1). Isotopic renography is one of the oldest nu-
clear medicine examination techniques (2), has been stud-
ied often, and is still the subject of new developments (3).
By recording a succession of time-limited images, the up-
take and washout of a radiotracer by the kidneys can be
followed and quantified. Each image represents only a few
seconds of acquisition. In combination with the very low
levels of injected activity, the result is very noisy images,
even in healthy patients. The noise level can be much
higher in many pathologic situations in which kidney up-
take is reduced. Besides visual interpretation of the images
in cine mode, time–activity curves can be built from the
images, and some quantitative parameters can be derived
from these time–activity curves, which are a useful tool that
will likely be increasingly used and required (4–6). The
most used parameters are left relative kidney function
(LRF), time to maximum uptake (Tmax), and half-empty-
ing time (T1/2). Noisy images lead to noisy time–activity
curves, and reduced accuracy and precision in the values of
these parameters are observed (7).

The noise in nuclear detection is Poisson noise, and its
control has been and is still challenging. Many postacqui-
sition noise reduction techniques have been explored:
conventional low-pass filters, Fourier filtering, wavelets,
or heuristic approaches (8,9). In the 2018 European Asso-
ciation of Nuclear Medicine guidelines for renal scintigra-
phy in adults (6), the recommended noise reduction
technique is a filter, based mainly on the works of Fleming
(10,11), with a 1-2-1 Kernel (F121) and a variable number
of passes as a function of the number of counts in the time–
activity curve.

In this study, we explored a noise reduction method
based on the finite Legendre transform (FLT), which makes
use of Legendre polynomials. Legendre polynomials are
orthogonal polynomials. They benefit from the interesting
mathematic properties of orthogonal polynomials, and their
computation can be fast (12). Although orthogonal polyno-
mials have already been used in nuclear medicine (13), our
approach uses sparse Legendre polynomials and offers the
possibility of automating the process for choosing the de-
gree of polynomials that allows the root signal of the
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time–activity curve to be represented while eliminating
much of the noise. The technique has been tested using
simulated and real adult patient data—and the LRF, Tmax,
and T1/2 parameters—and was compared with results
obtained with F121 or a commercial software program
currently used in clinical routine.

MATERIALS AND METHODS

Ethical Institutional Review Board approval was obtained, and
the requirement to obtain informed consent was waived for this
study because of its retrospective nature.

The unifying idea of this study was to test and challenge the
FLT-based method on a database containing Monte Carlo (MC)–
simulated realistic renography images (14) and real adult patient
data

The 2018 guideline of the European Association of Nuclear
Medicine (6) covers a large number of noise reduction methods for
renal scans, of which very few have been implemented in clinical
routine; we therefore took the recommended F121 as a baseline
for comparison with FLT. We also processed the data using state-
of-the-art commercial software. The relative function, Tmax, and
T1/2 were obtained with this software; the F121 and FLT tech-
niques were compared, and for the MC data they were also com-
pared with the ground truth.

Legendre Transformation Technique
This work was based on the FLT of generalized functions (15)

and relies on the Weierstrass approximation theorem applied in
this study to noisy time–activity curves. This theorem states that
we can construct a sequence of polynomials On(t) (n 5 0,. . ., N)
that converge uniformly to any continuous function f(t) on a finite
interval ½t1; t2�. We may write

f ðtÞ 5 +
N

n 5 0

AnOnðtÞ"t 2 ½t1; t2�; Eq. 1

where the An are weighting coefficients. For the Legendre trans-
formation, Equation 1 becomes

fLðtÞ 5 +
N

k 5 0

LðkÞPk ðtÞ"t 2 ½ 2 1; 1�; Eq. 2

where Pk ðtÞ is the Legendre polynomial of order k and the Legen-
dre coefficients L(k) are computed from

LðkÞ 5 2k1 1

N
+

t 5 1

t 5 2 1

f ðtÞPk ðtÞ; Eq. 3

where 2k1 1
N is a normalization factor linked to the Legendre poly-

nomial.
Before the transformation, a rescaling of the f(t) domain [t1, t2]

has to be performed on the definition domain of the Legendre
polynomial, which is [–1, 11].

In a preliminary study, a series of pure biexponential curves (Fig.
1A) that mimic, as a first approximation, normal and abnormal kidney
time–activity curves was generated. Poisson noise was added to these
curves to test the effect of the FLT. A perfect recovery of the original
biexponential was achieved when using only a few Legendre coeffi-
cients in Equation 2. In the case of noisy biexponentials, the signal and
the noise appeared to be mapped to 2 separate spaces (Fig. 1B), and the
highest coefficient number (kmax) to use in the limited Legendre trans-
form could be automatically determined by a threshold function based
on a ratio of noise to signal. The kmax (also sometimes called cutoff)
was applied to the set of Legendre coefficients of the curve, and the
inverse Legendre transform was calculated to obtain f 9:

f 9ðtÞ 5 +
kmax

k 5 0

LðkÞPkðtÞ; Eq. 4

which is f with considerable noise removal (Fig. 1A).
Applied to real renogram analysis, Equation 4 was the time–

activity curve with marked noise removal developed as a sequence
of limited Legendre polynomials of degree kmax, with no assump-
tion as to the kind of noise present in the data.

This approach has been tested on MC and patient datasets from
the renogram database used further in this study. We found that the
Legendre coefficient spectrum always had the same behavior for

the type of raw time–activity curve en-
countered in mercaptoacetyltriglycine
studies (Figs. 2 and 3). Starting from the
left part of Figures 2B, 2C, 3B, and 3C, it
can be seen that the Legendre coefficients
decayed to a certain k. This k defined the
kmax for the truncated Legendre series
expansion of the denoised time–activity
curve. The points beyond this kmax were
considered to be related to the noise in
the raw data.

The kmax was individually and automat-
ically determined on the Legendre coeffi-
cient spectrum. The maximum number n of
Legendre polynomials to be used was de-
termined by the Runge formula on poly-
nomial interpolation and was related to
the total number of points m in the time–
activity curve. It is expressed by the fol-
lowing formula:

n , 2 ·
ffiffiffiffi
m

p
: Eq. 5

FIGURE 1. (A) Noisy simulated curve (solid) and associated Legendre transform
(dashed). (B) Values of 23 first Legendre coefficients obtained using Equation 3 and
corresponding kmax.
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An autocorrelation process was applied to the absolute values
of the n coefficients, and each component was divided by the

factor (2 · k 1 1), where k is the kth Legendre coefficient con-

sidered. The minimum of this function gave us the kmax value.

Kidney Database
For the following parts of the study, we used a freely accessible

online kidney database (www.dynamicrenalstudy.org) that con-
tains MC-simulated studies (14) and real adult patient data.

This MC database was built using the SIMIND MC simulator, a
3-dimensional digital phantom of a human torso (XCAT), and the
99mTc-mercaptoacetyltriglycine pharmacokinetic properties. The

tracer pharmacokinetic profile was modeled using a multicompart-

ment model and the following first-order linear differential equa-

tion:

dCiðtÞ
dt

5
1

Vi
+
N

j 5 1

�
rj/iCjðtÞ 2 ri/jCiðtÞ

�
; Eq. 6

where CiðtÞ is the tracer concentration in compartment i at time t,
Vi the volume of the ith compartment, and rj/i the transfer rate
constant from compartment j to i. The simulation incorporated

heart, liver, bladder, and plasma concentration curves. The renal
cortex and the medulla were modeled by delay functions to allow
for a realistic time distribution. The MC dataset comprised 6
studies based on the same phantom for a total of 30 simulations.
Each study represented a specific split function. Images were
available for 2 different levels of simulated injected activity (50
and 100 MBq) and for anterior and posterior views, as well as a
reference study (RS) posterior view. RS was a simulation without
noise, tissue background, and attenuation, giving the actual time-
variant tracer distribution (ground truth). Each study was based on
the characteristics of its own RS. In all other simulations, a dif-
ference in the kidney-to-skin distance was considered. Each sim-
ulated dataset consisted of a dynamic renogram acquisition of 120
frames of 10 s and 128 · 128 pixels. The MC study characteristics
are summarized in Table 1.

In addition to the images available in the database, we created a
new set of images to which we added Poisson noise on RS in order
to compare FLT with the number of coefficients automatically
detected and F121 with several passes ranging from 2 to 8. These
numbers of passes were chosen to cover all possible values that
could be reached by the formula described for this filter in

FIGURE 3. (A) Raw patient data curves (solid) with corresponding
denoised signal by FLT (dashed and dotted). Top curve is left
kidney; bottom curve is right kidney. (B) Spectrum of first
Legendre coefficients for left kidney in A. (C) Spectrum of first
Legendre coefficients for right kidney in A. In this case, kmax

slightly differed between the 2 kidneys: 11 for left and 12 for right.

FIGURE 2. (A) Raw MC data curves (solid) with corresponding
denoised signal by FLT (dashed and dotted). Top curve is left
kidney; bottom curve is right kidney. (B) Spectrum of first
Legendre coefficients for left kidney in A. (C) Spectrum of first
Legendre coefficients for right kidney in A. B and C have same
kmax (coefficient number, 16).
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Fleming’s publications (10,11). The root mean squared error be-
tween the RS and the RS with the Poisson noise added was eval-
uated for the 12 simulations.

The patient database was 99mTc-mercaptoacetyltriglycine stud-
ies with posterior and anterior projections recorded in a single
acquisition. The studies were a 30-min dynamic acquisition of
180 frames of 10 s in 128 · 128 pixels. After browsing through
the database, it appeared that the first 20 patients were represen-
tative of the clinical cases and the shape of time–activity curves
encountered in the database. Only these 20 nondiuretic patient
studies were further considered for this study. A partial summary
of the clinical diagnosis is available in Supplemental Table 1 (sup-
plemental materials are available at http://jnm.snmjournals.org).
Anterior studies were used to assess if the worsening of the
signal-to-noise ratio compared with the posterior views would
influence the method. The computation of anterior studies was
also done for further consideration of a possible geometric mean
approach (11).

Regions of Interest (ROIs) and Background
Correction

Whole-kidney ROIs and backgrounds were drawn over the
kidney using the Hermes renogram analysis software (version
2.6Q; Hermes). For background regions, we used the automated
background generated by the Hermes software (lateral, going from
the lower to the upper poles). This background was manually
corrected for some patient data after discussion with a physician.
Thanks to an extra module kindly provided by Hermes, we were
able to export the ROIs in extensible-markup-language format and
subsequently import them to our in-house–developed software.

Using the study with the 50/50 ratio of the relative function, the
ROIs were drawn on the study for which visualization of both
kidneys was optimal. This step was done separately for the
posterior and anterior views, whereupon the ROIs were propa-
gated to all posterior or anterior datasets. This procedure was
possible because the simulation relied on the same anatomic
model with different subregional voxel behavior.

The background correction was implemented in our in-house
software as described in Hermes (4,16) to avoid any possible bias
due to different methods.

Time–Activity Curve Analysis
With the integral method, relative left renal uptake was de-

termined for the interval from 1 to 2 min after injection (4,6). Two
time parameters were generated: Tmax and T1/2. Tmax was

determined by the frame where the first maximum count was
reached. T1/2 was obtained from the time of the first maximum
count to the time when the time–activity curve decreased to half
this value. There were no differences between the Hermes soft-
ware and our subroutines for the determination of LRF, Tmax,
or the number of counts in the imported ROIs, before applica-
tion of any FLT or F121 method to the raw data of the MC RS.
A maximum difference of 0.1 min was observed in T1/2 but
was not significant (R2 5 0.997 and P , 0.001). An extrapola-
tion method based on the center-of-gravity technique was used
to obtain the position of T1/2. Approximation and rounding
methods are not described by Hermes in its documentation.
To ensure the use of identical time–activity curves in Hermes
and in our software, no attenuation or decay corrections were
applied.

Software Implementation
Reference measurements for LRF, Tmax, and T1/2 were

performed with Hermes renogram analysis software. This software
extracted the studied parameters from the raw data. The Hermes
manual (p43 of Hermes document CD505.5_P31S3V2.6) stated a
possible smoothing of the time–activity curve for display pur-
poses only, which ‘‘does not affect results.’’ In-house software
was developed in Python (version 3.6) to apply FLT or F121 on
the raw time–activity curve and background data before extract-
ing the kinetic parameters. F121 was implemented both for a
fixed number of passes and for a varying number of passes as
described by Fleming for posterior acquisitions (10,11), with
a minimum of 2 passes.

Statistical Analysis
The data were divided into 3 subsets (RS, noisy MC, real

patient data), and 3 parameters were analyzed (LRF, Tmax, and
T1/2). The mean, SD, range, and percentile were used to describe
the spread of the measurements. Agreements between methods
were assessed by the Bland–Altman method (17). The slope, in-
tercept, and coefficient of determination were obtained from linear
regression for a pairwise comparison of the outcomes of the 3
processing methods. Statistical F tests and t tests were performed
at a 5% level of significance (P , 0.05) using XLStat (version
2019.1.3). In the case of multiple comparisons, the Holm–Bonfer-
roni adjustment was applied.

TABLE 1
MC Study Characteristics

Study LRF (%)

Tmax for both

kidneys (min)

T1/2 LK

(min)

T1/2 RK

(min)

Clearance

(mL/min)

1 50
2 20 3.7 6.6 6.2 260
3 70
4 50
5 20 4.0 9.8 9.2 130
6 70

Each study contains 5 series with 1 posterior RS and 2 posterior
and anterior studies with 100 and 50 MBq, respectively, of injected

activity. Time values were obtained from RS.

TABLE 2
Results for 12 Simulations of RMS Error Between RS and RS
with Poisson Noise Added for Different Processing Methods

Processing method Mean SD

None 57.8* 14.3
FLT 18.1 3.6
F121, 2 passes 32.8* 5.7
F121, 4 passes 34.6* 4.0
F121, 6 passes 39.0* 4.2
F121, 8 passes 43.6* 4.7

*Statistically different from FLT (P , 0.0001).

Data are for 6 methods and 2 kidneys. Number of coefficients for

FLT was automatically determined, and number of F121 passes was
varied from 2 to 8.
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RESULTS

RS with Poisson Noise Added

The mean and SD of the root mean squared errors for the
kidney global ROIs between the RS and the RS with added
Poisson noise are presented in Table 2. The RMS error was
calculated between the RS with noise added, FLT, and F121
for different numbers of passes and the RS as a reference. The
RMS error was systematically much lower for FLT than for
F121 and was statistically significantly different (P , 0.0001)
whatever the number of passes in F121. Moreover, applying FLT
on the RS or on the RS with noise led to an exactly identical
RMS error; thus, the FLT on noisy curves always converged,
whatever the noise, to the same baseline. The performance of
each method is shown in Supplemental Figure 1, where the effect
of the different filters on the high and low frequencies present in
the noisy signal is visible. By lowering the ratio of the signal-to-
noise ratio on the RS with added Poisson noise, we observed
an increase in the optimal number of passes for F121, as

described by Fleming (10), but with an RMS always 2–3
times lower for FLT.

Noisy MC Studies

There was excellent agreement (Table 3) for the measure-
ment of LRF (P , 0.001) among all 3 methods. The LRF
between Hermes and FLT or F121 never exceeded a dif-
ference of 2%. Between FLT and F121, there was no dif-
ference for 86.7% of the LRF values, and for the other
values the difference never exceeded 1%.

Because simulated Tmax and T1/2 differed after the
simulated clearance (Table 1), Tmax and T1/2 results are
presented separately for studies 1–3 (clearance, 260 mL/
min) and studies 4–6 (clearance, 130 mL/min). Within each
group, the mercaptoacetyltriglycine kinetic was the same
but the noise level was different. The expected (true) value
is indicated in Figure 4. Compared with Hermes outputs,
FLT delivered values that were much less dispersed, and the
mean value was closest to the expected value. F121 was
intermediate between Hermes and FLT.

A statistical analysis was performed on the outputs for
Tmax and T1/2 and is presented in Table 4. We used an F
test to determine the variance of each pairwise method. The
mean and its SD were calculated, and the mean squared
deviation from the expected value of the RS was assessed.
The ratio of the variance for each pair (F) and its P value
were added. Attention must be paid to the fact that T1/2
was computed from the section of the time–activity

curve where the signal-to-noise ra-
tio worsens.

The analysis of Table 4 showed a
mean squared error for Tmax that
was systematically at least 2 times
lower for FLT than for F121 and
reached the level of significance
(P , 0.05). For T1/2, mean squared
error was also always lower for FLT
than for F121, even if the level of sig-
nificance was not reached for this
sample of data. The largest deviations
from the expected value (large mean
squared error) and SD were observed
for Hermes, which computed the pa-
rameters from the raw data. A visual
example of the discrepancies between
the methods for the determination of
Tmax and T1/2 is shown in Figure 5.

Patient Data

For LRF, the data associated with
the Bland–Altman plots, reported in
Table 5, demonstrated good agree-
ment between F121 and FLT. There
were no systematic differences be-
tween the values obtained after FLT
or F121.

TABLE 3
Summary Statistics of Linear Regression on MC Data for

LRF

Parameter Slope R2 Intercept (%)

Hermes − FLT 0.975 0.996 1.317
Hermes − F121 0.966 0.996 1.753
FLT − F121 0.990 0.999 0.495

FIGURE 4. Box plot of Tmax obtained by 3 methods for left and right kidneys in MC
simulations, showing clearance of 260 (A) and 130 (B) mL/min. Horizontal black lines
represent expected (true) values given in Table 1.
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For Tmax and T1/2, Bland–Altman plots (FLT vs. F121)
are presented in Figure 6 and Supplemental Figure 2, re-
spectively, for both kidneys. The results of the Bland–
Altman analysis (bias and SD) are given in Table 5 for
the 3 pairwise comparisons. The 2 studies with zero LRF
values were excluded from the statistics. The results dem-
onstrate good agreement for Tmax between the FLT and
F121 methods in the range of 2–8 min, which is considered
the reference range for this parameter (18). The largest
differences appeared mainly for abnormal kidneys with a
Tmax above 10 min. This observation also holds when
comparing FLT and Hermes.
Kidneys with no measurable function have been dis-

carded from the results for T1/2. However, there were also
15 cases with one kidney (and sometimes both) in which
T1/2 was never reached during 30 min of examination.
These have been visually checked to verify the consistency
of the results. For these cases, FLT and F121 resulted in the
same output with no T1/2. In contrast, Hermes provided T1/
2s ranging from 10 s to a few minutes in about half these
cases. For kidneys with normal behavior (T1/2 around or
below 5 min) (18), the Bland–Altman plots show fairly
good agreement among all 3 methods, as illustrated for
F121 and FLT in Supplemental Figure 2. For T1/2s outside
the reference range, the differences between the methods
were larger.

DISCUSSION

To reduce the impact of Poisson noise on scintigraphy
time–activity curves, we proposed a method based on FLT.
FLT can be compared with the Fourier transformation

widely used in nuclear medicine and medical imaging. The
Fourier transform of the original signal is first computed.
Most of the time—for noise filtering, for example—the
number of Fourier coefficients is limited to an upper value,
the cutoff frequency. Then, an inverse Fourier transfor-
mation delivers the final filtered signal. The same global
process applies for FLT (kmax can be seen as the cutoff

frequency) but with some advantages, such as the low com-
putational cost and the disappearance of side effects, in-
cluding phase shift in Fourier. In the FLT method, the
amplitudes of the components of the Legendre spectrum
varied with the noise in the time–activity curve in a differ-
ent way (Figs. 1–3). Nevertheless, the FLT processing could
be fully automated.

The comparison of the noise reduction between RS and
RS with added noise was clearly better with FLT, as the
RMS error was about 2 times lower than for F121 (Table 2).
Furthermore, the expanded view in Supplemental Figure 1
shows that FLT softened the higher and lower frequencies
in the signal, whereas F121 kept the lower ones. For RS, the
perfect agreement for LRF, Tmax, and T1/2 between Her-
mes and FLT could be explained by the Weierstrass theo-
rem, which states that any function can be approached by
polynomials as closely as desired.

TABLE 4
Statistical Analysis for MC Data

Mean (min) SD (min) MSE Hermes/FLT Hermes/F121 F121/FLT

Study E (min) Hermes FLT F121 Hermes FLT F121 Hermes FLT F121 F P F P F P

Tmax 1–3 3.7 3.77 3.74 3.78 0.59 0.19 0.28 0.34 0.04 0.08 10.13 ,0.001* 4.55 ,0.001* 2.23 0.017*
Tmax 4–6 4.0 3.9 3.95 4.08 0.60 0.29 0.50 0.36 0.08 0.24 4.34 ,0.001* 1.48 0.15 2.93 0.002*
T1/2 LK 1–3 6.6 4.96 6.49 6.39 1.72 0.30 0.42 5.47 0.10 0.21 32.62 ,0.001* 16.87 ,0.001* 1.93 0.11
T1/2 RK 1–3 6.2 5.44 6.21 6.29 0.82 0.21 0.25 1.20 0.04 0.07 15.15 ,0.001* 10.66 ,0.001* 1.42 0.25
T1/2 LK 4–6 9.8 6.34 9.37 9.27 2.97 0.81 1.28 20.22 0.80 1.82 13.35 ,0.001* 5.35 0.002* 2.49 0.05
T1/2 RK 4–6 9.2 7.03 9.3 9.18 1.75 0.62 0.89 7.54 0.37 0.75 7.83 ,0.001* 3.83 0.008* 2.04 0.10

*Statistically significant under Holm–Bonferroni adjustment for multiple comparisons.

E 5 expected value from Table 1; MSE 5 mean squared error (∑​ ðX−EÞ2/N).
Mean, SD, and MSE are from expected value for studies 1–3 with clearance of 260 mL/min and studies 4–6 with clearance of 130 mL/

min. Hermes/FLT, Hermes/F121, and F121/FLT are ratio of variance obtained with F test and associated P value. LK 5 left kidney; RK 5
right kidney.

FIGURE 5. Fitted time–activity curve obtained with FLT
(dashed) or F121 and optimum number of passes (dotted) of
raw time–activity curve (solid) and computed kinetic parameters
for each method.
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For MC-simulated data, the expected values are known for
the 3 parameters (Table 1), thus permitting an evaluation of the
correctness and reproducibility of the 3 methods (Hermes, FLT,
and F121). The analysis of the results for LRF showed that
there were no significant differences among the methods. The
statistical analysis showed excellent agreement between FLT
and F121. For Tmax, FLT was the method with the lowest
SD and mean squared deviation (Table 4). The systematically
lowest mean squared error between the expected and measured
values and the statistically significant F test confirmed the better

performance of the Legendre approach. The comparison with
the Hermes system confirmed that working on raw data can
lead to large variations in the results. We observed the largest
differences from the expected value for T1/2, especially with
the Hermes method (Table 4). The direct determination of T1/2
from the raw data resulted in significant fluctuations in the
mean square deviation and a large SD, and there were system-
atically larger differences between Hermes and FLT or F121. It
should also be kept in mind that T1/2 relied on the correct
determination of Tmax.

For real patient data, the results
obtained for LRF shown in Table 5
were comparable for the 3 methods.
The close-to-zero bias for all the pair-
wise comparisons, the upper and lower
levels of agreement, and the confidence
intervals in Bland–Altman indicate that
the FLT method was at least as reliable
as the 2 other methods for this param-
eter. For Tmax, it was observed on the
time–activity curve that the presence of
noise misled the Hermes algorithm,
leading to the same conclusion as for
the MC studies: working on raw data
induced greater variation in the results.
T1/2 was influenced by the correct
evaluation of Tmax, and the discrep-
ancies among the different approaches
were observed for time–activity curve
with a poor signal-to-noise ratio. When
a large (in minutes) difference among
the methods was recorded, visual as-
sessment systematically confirmed the
better performance of FLT and F121
than of Hermes. The statistical analysis
(Table 5) showed no evidence in favor
of F121 or FLT for Tmax or T1/2 de-
termination in patients. This observa-
tion could result from the restricted
number of cases in which a large dif-
ference between FLT and F121 was ob-
served. It is interesting that these cases

TABLE 5
Bias and SD Obtained from Bland–Altman Analysis of Different Parameters for Each Pairwise Method Comparison on

Patient Data

Bias SD

Parameter Hermes − FLT Hermes − F121 FLT − F121 Hermes − FLT Hermes − F121 FLT − F121

LRF (%) 0.025 0.15 0.125 1.48 1.54 0.72
Tmax LK −0.62 −0.46 −0.15 1.89 1.85 0.39
Tmax RK 0.24 0.22 −0.02 1.9 1.79 0.35
T1/2 LK −4.09 −3.9 0.23 4.73 4.72 0.54
T1/2 RK −2.82 −2.06 0.1 3.77 3.11 0.65

LK 5 left kidney; RK 5 right kidney.

FIGURE 6. Bland–Altman plot of agreement between Tmax obtained by FLT and
F121 for left (A) and right (B) kidneys in patients.
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systematically concerned values of Tmax or T1/2 outside the
normal range.
One advantage of FLT over F121 is that FLT is fully

automatic whereas F121 needs to be adapted—for example, if
the geometric mean of anterior and posterior images is used. In
this case (11), the formula giving the number of passes should
be modified by a factor of

ffiffiffi
2

p
. This modification can be seen in

Supplemental Figure 3, where we tested FLT for the geometric
mean. Moreover, the degree of smoothing with F121 must be
increased when considering deconvolution (10), because of the
propagation and amplification of noise in this process. The FLT
method does not require such adaptation. In our ongoing work
on deconvolution-based analysis of renograms, we effectively
observed that no modification of FLT was necessary, and the
requisite filtering of the curves before and after deconvolution
was reduced to a single operation.
There are limitations to this study. First, the MC simulations

in the database contained studies for 2 different clearances and
with a varying LRF. However, Tmax values were almost
identical, and there were only 2 clearly different T1/2 values.
Testing FLT for more MC data with an abnormal Tmax or T1/2
would be interesting. Also applying FLT to other databases of
patient renograms, and in particular with children’s data, would
be a subject of future work in view of a clinical application of
the Legendre method. However, such clinical studies were out-
side the scope of the present initial work. Regarding the case
presented in Supplemental Figure 4, FLT filtered not only
higher but also lower frequencies, in contrast to F121. However,
this finding raised the question of filtering not only statistical
noise but also physiologic noise—a possibility that requires a
more in-depth investigation.
As a final general remark, we would like to emphasize

that the present study does not relate only to renograms, as
other types of quantification procedures in nuclear medicine
could be concerned.

CONCLUSION

On MC-simulated data, where the true values were known,
the Legendre method was definitively superior. The parameter
values were the closest to the expected values, and the dispersion
was the lowest. For the patient data, the Legendre method and
the method recommended by the European Association of
Nuclear Medicine were in good agreement, with the exception
of the 2 time parameters seen in highly abnormal kidneys. The
other advantages of FLT are the fully automated determination
of the degree of smoothing and the independence of the method
with respect to the type of analysis considered.
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15. Méndez-Pérez JMR, Miquel Morales G. The finite Legendre transformation of

generalized functions. Rocky Mt J Math. 1998;28:1371–1389.

16. Moonen M, Granerus G. Subtraction of extra-renal background in 99mTc-DTPA

renography: comparison of various regions of interest. Clin Physiol. 1992;

12:453–461.

17. Bland JM, Altman D. Statistical methods for assessing agreement between two

methods of clinical measurement. Lancet. 1986;1:307–310.

18. Esteves FP, Taylor A, Manatunga A, Folks RD, Krishnan M, Garcia EV. 99mTc-

MAG3 renography: Normal values for MAG3 clearance and curve parameters,

excretory parameters, and residual urine volume. AJR. 2006;187:W610–

W617.

DENOISING IN RENOGRAM ANALYSIS • Destine and Seret 353


