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Artificial intelligence (AI) in nuclear medicine and radiology
represents a significant disruptive technology. Although there
has been much debate about the impact of AI on the careers of
radiologists, the opportunities in nuclear medicine enhance the
capability of the physician and at the same time have an impact
on the responsibilities of physicists and technologists. This
transformative technology requires insight into the principles
and opportunities for seamless assimilation into practice with-
out the associated displacement of human resources. This
article introduces the current clinical applications of machine
learning and deep learning.
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The use of artificial intelligence (AI) in nuclear medi-
cine and radiology has emerged over the last 50 years (e.g.,
auto-contouring). Typically, AI has been involved in prob-
lem solving associated with logic and reasoning. The more
recent developments in deep learning (DL) have been the
subject of increased research and publications in radiology
and nuclear medicine journals because of new capabilities
in AI-driven image segmentation and interpretation. As
early as 1976, commentators and experts on AI predicted
that it would bring careers in medicine to an end (1). Al-
though Geoffrey Hinton has been widely attributed as pre-
dicting AI would put radiologists out of a job (2), his more
conservative perspective predicted significant changes to
health care delivery and the way medicine is practiced (3).
Even though the doomsday predictions may be exaggerated,
there is no denying that AI, neural networks, and DL repre-
sent the greatest disruptive technology to confront radiology
and nuclear medicine since the early days of Roentgen,
Becquerel, and Curie. AI is both the vehicle for transport
into the next century of sustainable medical imaging and, if

ignored, a potential extinction-level competitor. The key to
sustainable coexistence lies in understanding and exploiting
the capabilities of AI in nuclear medicine while mastering
those capabilities unique to the human health professional.

AI

Precision nuclear medicine heralds an exciting era with
the reengineering of clinical and research capabilities. The
term AI was first used in 1955 to broadly describe the use of
computer algorithms (Fig. 1) to perform tasks that are gen-
erally associated with human intelligence (e.g., learning or
problem solving) (4,5). A significant factor driving the
emergence of AI in radiology has been that, since 2015,
visual recognition using AI has had, for the first time, a
lower error rate than the human error rate (5,6). An inter-
esting application given the heightened capabilities of AI in
visual recognition is in incidental findings. The classic ‘‘go-
rillas in our midst’’ experiment on inattentional blindness
(7) highlighted that humans focusing on a specific task
(counting the number of times a ball was passed) in a
complex scene could render the observer blind to a person
in a gorilla suit walking through the middle of the scene.
This was later examined in chest CT interpretation with an
artifactual gorilla inserted into multiple CT slices (8). The
artifact was overlooked by 83% of expert radiologists, and
60% of those were shown—using eye tracking—to have
looked directly at the artifact. Although incidental findings
in general nuclear medicine studies are readily identifiable,
inattentional blindness may decrease detection in more com-
plex datasets associated with SPECT, PET, and coregistered
images—a role, perhaps, for AI.

Machine learning (ML) is a subtype of AI (Fig. 1) that uses
algorithms through data analysis without being explicitly pro-
grammed (4,9). ML tends to be associated with solving prob-
lems of logic after learning from human-defined teaching
cases. ML has been used widely more recently because of
the emergence of improved hardware, the availability of big
data or at least large datasets for training, and the fact that ML
is a valuable tool for analysis of extracted features in radio-
mics (10). Radiomics interprets an image as data and extracts
and analyses features and groups of features to predict out-
comes. Some features may be apparent to visual interpreta-
tion (semantic) whereas others may be revealed only through
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computational extraction. Radiomics has traditionally been
associated with radiologic imaging (texture and shape, among
many other features) but includes molecular imaging (the
various SUVs, ejection fraction, and many more). The impor-
tance of radiomic feature extraction is in identifying those
image features that, either individually or in combination with
other -omic features, predict an outcome. This includes iden-
tifying redundancy in the data; that is, features that have a
high correlation with one another. Indeed, ML can aid in de-
termining which of many extracted radiomic features should
be used alone or in combination (Fig. 2). Specific capabilities
of ML include (2,5,11,12) disease or lesion detection and
classification; automated image segmentation, preanalysis,
and quantitation; extraction of radiomic features from im-
age data; image reconstruction; case triage and reporting
prioritization; research and data mining; and natural lan-
guage processing.

Representation learning (RL) is a subtype of ML (Fig. 1)
in which the algorithm does not learn from human-inter-
preted images (4). RL requires larger sets of training data to
learn the features required to then accurately classify the
images and extracted features. In many cases, if adequate
training data are available, RL will perform better than ML
(4). DL is, then, a subtype of RL (Fig. 3) that adds several
processing layers (depth) to detect complex features in an
image (4). The vehicle typically used by ML, RL, and DL is
the artificial neural network (ANN). A convolutional neural
network (CNN) is a type of ANN used for DL that applies a
convolutional process to extract features from the image
itself (Fig. 3), whereas an ANN typically has feature data
as the input (Fig. 2).

APPLICATION OF AI IN NUCLEAR MEDICINE

The emphasis on precision nuclear medicine, the emer-
gence of radiomics, and the establishment of large pa-
tient databases (big data) demand implementation of DL
processes to optimize outcomes (Fig. 4). Largely, these
applications depend on a CNN; however, an ANN has nu-
merous important applications that do not need convolution.
For some data, an ANN is an excellent adjunct to tradi-
tional statistical analysis in research or clinical practice. An
ANN can also be used to build theranostic decision trees, per-
form business analysis, and ensure quality. Although a
CNN is required for automated segmentation and extraction
of data from images in radiation dosimetry, an ANN may be
useful in modeling radiation dosimetry in patients undergoing
therapy.

The use of ANNs in nuclear medicine is not new. In
1993, a single hidden layer of 15 nodes was used with 28
input features trained on 100 ventilation–perfusion lung
scans and validated against 28 new cases, with the ANN
proving to be superior to experienced physicians (P 5
0.039) (13). More recently, an ANN was trained on 5,685
regions, with grounded truth provided by 6 expert nuclear
cardiologists, and was shown to be superior to 17-segment
defect scoring in myocardial perfusion scans (14). In all
cases (stress, rest, and defect regions), the ANN had a better

FIGURE 1. Hierarchy of AI.

FIGURE 2. Validation phase of ANN demonstrates basic structure of ML-based ANN.
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area under the curve on receiver-operating-characteristic
analysis than did the 17-segment defect score. A multicenter
trial (15) recently reported the use of a deep CNN trained
on 1,160 patients across 4 centers and reported a marginal,
but statistically significant, improvement for DL over total
perfusion defect scores, with the area under the receiver-

operating-characteristic curve being superior in all 4 sites
for both per-patient and per-vessel data and cumulatively
for per-patient data (3.8%, P , 0.03) and per-vessel data
(4.5%, P , 0.02). The highlight of the report was the
integration of CNN outcomes seamlessly into a radiomic
polar map display typical of standard practice, signposting

the future software integration of AI
(Fig. 5). In an earlier report, Betancur
et al. (16) evaluated ML in predicting
major cardiac events in 2,619 myocar-
dial perfusion SPECT patients, with ML
being better in predicting MACE than
expert readers and automated quantitative
software but less reliable in providing
a timeline to MACE.

Choi et al. (17) reported the use of
unsupervised DL for 18F-FDG PET
to identify Alzheimer disease, with an
area under the receiver-operating-char-
acteristic curve of 0.9 for differentiating
Alzheimer disease, and identification of
abnormal patterns in 60% of studies
classified as normal by expert visual-
ization. DL has also been used to iden-
tify high-risk patients most likely to
benefit from induction chemotherapy
in nasopharyngeal carcinoma, using
18 radiomic features extracted from
PET and CT, although 5-y disease-free

FIGURE 3. Basic structure of CNN, in which network extracts radiomic features, produces convolution function, pools data
through kernel, and flattens pooled feature map for input into fully connected hidden layers of neural network. ReLU 5 rectified
linear unit.

FIGURE 4. Schematic representation of semantic evaluation of imaging data,
addition of radiomic feature extraction, and ANN analysis to produce small data
and potential to integrate with big data to enhance outcomes and drive precision
nuclear medicine.
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survival rate (50.1% for high risk and 87.6% for low risk,
P , 0.001) is not a measure of CNN accuracy (18). Quanti-
tative SPECT/CT has also been combined with DL for au-
tomated volume-of-interest segmentation on CT and
application to SPECT data for calculation of glomerular
filtration rate (19). The manual regions differed from the
automated regions by 2.8%, with a correlation of 0.96,
highlighting the value of AI in automating otherwise time-
consuming and potentially prohibitive manual functions (i.e.,
allowing SPECT to be used over planar imaging). CNN-based
automatic renal segmentation on unenhanced CT was applied
after 177Lu-prostate-specific membrane antigen SPECT to es-
timate radiation dosimetry (20). Trained against 89 manually
drawn regions, the CNN was demonstrated to be fast, with
comparable accuracy to humans (mean dice scores of 0.91 for
right and 0.86 for left), although the CNN had some difficul-
ties with cystic kidneys.
An important area of development in AI is pseudo-CT

attenuation maps (Fig. 6). The premise is that CT-based
attenuation maps in SPECT and PET are associated with
not only increased patient radiation dose but also position

mismatch between the emission and transmission scans
(21). MRI has significant limitations in estimating an atten-
uation map for SPECT/MRI or PET/MRI hybrid systems
(21). The method for maximum-likelihood reconstruction
of activity and attenuation has been previously published but
suffers from issues associated with crosstalk and noise (21).
A combination of advances in time-of-flight technique and
DL has seen several investigators explore the use of CNNs to
overcome the limitations of maximum-likelihood reconstruc-
tion of activity and attenuation and provide accurate attenu-
ation maps without transmission studies. Hwang et al. (21)
evaluated 3 architectures of deep CNNs that combined the
maximum-likelihood reconstruction of activity and attenua-
tion–produced attenuation map with emission data and the
CNN to produce an attenuation map that more closely mod-
eled the CT-based grounded truth (lower error). The results
reported reduced noise, less cross talk, and elimination of
artifacts but relied on some trial and error. Later work (22)
confirmed these observations in PET/MRI using a deep neu-
ral network in 100 cancer patients. In PET/MRI, Torrado-
Carvajal et al. (23) integrated the Dixon method with a CNN

FIGURE 5. Prediction of obstructive coronary artery disease with integration of DL outputs into polar maps. Image provides
example of how outputs of AI might be integrated into traditional image display, in this case in form of polar maps with AI predictive
data displayed in same mode. CAD 5 coronary artery disease; LAD 5 left anterior descending coronary artery; TPD 5 total
perfusion defect. (Reprinted from (15).)
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to generate pseudo-CT for pelvic PET scans and reported
less than a 2% variation from the CT-based attenuation map
and nearly 7 times better error than the standard Dixon
method. Similarly, Leynes et al. (24) used a deep CNN
combined with zero-echo-time Dixon pseudo-CT to pro-
duce more accurate attenuation maps than traditional
MRI pseudo-CT methods. Both the Dixon method and
the zero-echo-time method for pseudo-CT have several lim-
itations (25) that have been overcome with the application of
deep CNN MRI–based pseudo-CT generation, which is rapid
and has a reconstruction error of less than 1% (25). More
recently, DL approaches have been reported to produce
pseudo-CT attenuation maps from the 18F-FDG brain PET
sinogram with a mean error of less than 1% against CT-cor-
rected PET (26).

DISCUSSION

ANNs are effective in evaluating the potentially large
number of extracted radiomic features and identifying those
that should be used alone or in combination in decision making
(2). ANNs have the capability of demonstrating relationships
among features and outcomes that may not be apparent in the
standard combination of semantic reporting (2). Although
ANNs are unlikely to make physicians and radiologists re-
dundant, there is an opportunity to enhance patient outcome,
reporting accuracy, and efficiency using ANNs (Fig. 7).

There has been significant angst among radiologists
concerning the prospect that AI might encroach on their
work function (1–3), a fire fueled by social media, blogs,
and other forms of discussion proposing that the end of
the radiologist is near. Any serious endeavor to integrate
AI into radiology or nuclear medicine must maintain human
authority, and the proposed ‘‘radiologist-in-the-loop’’ model
provides some reassurance (2). For nuclear medicine, phy-
sician expertise relates to tasks that cannot be readily auto-
mated, whereas lower-order tasks that are easily automated
not only free up valuable time for higher-order tasks
but also increase the value of the physician. The same
argument could be made for other nuclear medicine pro-
fessionals. AI stands to create efficiencies and increase the
perceived value of human resources. In consideration of the
tasks that are more suitable to AI automation, the bulk of
discussion centers on the impact that AI will have on radi-
ologists. It is important in nuclear medicine to look more
broadly at the influence of transformative technology on
the roles and responsibilities of the medical physicist and
nuclear medicine technologist. The consequent understand-
ing of the principles and applications of AI will equip nu-
clear medicine professionals with the capacity to assimilate
AI technologies into the workplace, in a similar manner to
the many advances in technology that have reshaped roles
and responsibilities.

FIGURE 6. Model for potentially using CNN for improved pseudo-CT attenuation correction in PET/MRI (25) or for attenuation
correction of PET without CT (or MRI) (26).
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CONCLUSION

AI has penetrated the daily practice of nuclear medicine
over recent decades with little disruption. The emergence of
ANNs and CNN applications has seen a significant shift in
the landscape, with opportunities outweighing the threat.
Nonetheless, understanding of the potential applications
and the principles of AI, ANNs, and DL will equip nuclear
medicine professionals for ready assimilation, averting the
doomsday fears permeating radiology.
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FIGURE 7. Several models for integration of AI into radiology
have been proposed (4), but in nuclear medicine, perhaps most
appropriate model captures best of each domain.
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