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We report the single-step synthesis of radioactive gold nano-
particles with an activity and size appropriate for potential use in
cancer treatment and diagnosis. Methods: A solution of 2 mM
gold chloride (HAuCl4⋅3H2O), 1 mM polyvinylpyrrolidone (mo-
lecular weight, 360,000), and 60 mM 2-propanol was prepared
in deionized water. Seven different samples of the solution were
irradiated in a neutron flux of 7.45 · 1012 n/cm2⋅s in a research
reactor for 0.5, 1, 3, 5, 10, 30, or 60 min. The resulting nanopar-
ticles were characterized for morphology and chemical composi-
tion using a transmission electron microscope and ImageJ.
Results: The obtained nanoparticles were 3–450 nm in size. The
average size depended on the length of irradiation, with a longer
irradiation producing smaller nanoparticles. Irradiation for 10 min
produced nanoparticles with characteristics suitable for potential
cancer treatment and diagnosis (average size, 50 nm; activity,
6.85 MBq/mL).Conclusion: Direct production of chemically stable
radioactive gold nanoparticles was successfully accomplished us-
ing the Missouri University of Science and Technology reactor. The
nanoparticles had physical and radioactive characteristics poten-
tially useful for cancer treatment and diagnosis.
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Cancer and heart disease are the principal causes of
death around the world (1). The American Cancer Society,
with the help of the National Cancer Institute, the National
Program of Cancer Registries, the National Center for
Health Statistics, and the North American Association of
Central Cancer Registries, projected that 1,688,780 new
cancer cases and 600,920 cancer deaths would occur in
the United States during 2017 (2). Accordingly, billions
of dollars are being invested in research to increase knowl-
edge about the causes and biology of cancer and to develop
effective therapies to improve patient outcomes. Some dis-

advantages of current cancer therapies include inability to
bypass biologic barriers, poor delivery, inadequate distribu-
tion in the body, difficult detection by imaging (3), and
radiation damage to normal tissue (4). The application of
nanotechnology in cancer treatment is helping overcome
these limitations, increasing the possibility of defeating
the disease and extending life expectancy (5).

Gold nanoparticles have been used in cancer diagnosis
and treatment because of their high stability, low reactivity,
low toxicity to the human body, and easy surface-function-
alization process (6–8). Gold nanoparticles have also been
used to enhance imaging, and their ability to increase ab-
sorption or scattering of radiation has found applications in
photothermal therapy, chemotherapy, and radiation therapy
(9–12). The newest research on cancer treatment with gold
nanoparticles has been on the use of 198Au and 199Au ra-
dioactive isotopes for locally irradiating and killing tumor
cells (13). The properties of 198Au and 199Au (half-life,
2.695 and 3.169 d; bavg, 312 and 86 keV; bmax, 961 and
453 keV; and g, 412 and 159 keV, respectively) allow easy
manipulation of the nanoparticles during transport and
chemical processing before clinical application.

Previous research has been on the properties of radioac-
tive gold nanoparticles for treating cancer cells in mice (13–
17). Nanoparticles with b-emission at energies of a few
megaelectron-volts can be used to treat tumors with a maxi-
mum diameter of 1 cm (15). The b-emission energy of 198Au
(bmax, 0.96 MeV) allows use of radioactive gold nanoparticles
as a permanent implant in brachytherapy, where it is possible
to kill cancer cells using doses higher than 50 Gy (13,15). One
of the studies found that the overall tumor volume could be
reduced by 82% after 3 wk of treatment using an intratumoral
administration of radioactive gold nanoparticles with an activ-
ity of 15.1 MBq (13). Some studies have also demonstrated
the possibility of treating tumors by using x-ray beam irradi-
ation of inert gold nanoparticles rather than activated gold
nanoparticles (18,19). The principal advantage of using radio-
active gold nanoparticles is a reduction in the duration, dos-
age, and side effects of chemotherapy.

Many studies have been published on different methods
to produce radioactive gold nanoparticles (14,19–23). Most
of these methods require two steps: synthesis of the nano-
particles by chemical, physical, or biologic process, fol-
lowed by activation of the nanoparticles using a neutron
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source. This article describes a novel method to produce
radioactive gold nanoparticles in a single step. Direct syn-
thesis was achieved by radiolysis of an aqueous solutions of
HAuCl4 in the Missouri University of Science and Tech-
nology reactor. Combining neutron and g-irradiation in a
nuclear reactor allows simultaneous chemical reduction and
neutron activation, reducing production time. Radiation-in-
duced synthesis has two main advantages over conventional
methods. First, the nanoparticles are of high purity because
of the elimination of process by-products and contamination.
Second, particle size and structure can be finely controlled
through modification of the dose rate and total dose (24).

MATERIALS AND METHODS

The chemical gold precursor was 99.99% (metal basis) gold
chloride (HAuCl4�3H2O; American Chemical Society), and the
colloidal stabilizer was 99.99% polyvinylpyrrolidone (molecular
weight; 360,000). Both reagents were purchased from Alfa-Aesar.
The radical scavenger was 2-propanol, and the medium was deion-
ized water.

A solution of 2 mM HAuCl4, 1 mM polyvinylpyrrolidone (mo-
lecular weight, 360,000), and 60 mM 2-propanol was prepared
using deionized water at room temperature. This composition does
not lead to any thermal reduction of the gold salt. Pure nitrogen was
bubbled through the solution for 30 min to remove oxygen and
ensure that the reduction process was due to the radiolysis products:
hydrated electrons and H� atoms with negative redox potential. A
similar procedure has been previously published (25). The irradia-
tion process was performed in the Missouri University of Science
and Technology reactor operating at a thermal power of 200 kW.
Seven different 2-mL samples were irradiated for 0.5, 1, 3, 5, 10, 30,
or 60 min each. The nanoparticles in solution were characterized for
morphology, size distribution, and chemical composition using a
transmission electron microscope (Technai F20) with the help of
the Java-based image-processing program ImageJ.

RESULTS

Chemically stable radioactive gold nanoparticles were
successfully produced in a single step from combined g-

and neutron irradiation of the precur-
sor solution. As previously shown,
nanoparticle synthesis is likely initi-
ated by the radiolytic reduction of wa-
ter and by species such as hydrated
electrons, H�, OH2, H2O2, and H2,
which reduce metal ions in the solu-
tion (26–30). After the irradiation pro-
cess, the solution changed color from
light yellow to dark red. Samples that
were irradiated for shorter times had a
lighter color than samples that were
irradiated for longer times. As expected,
the difference in color change was due
to the different sizes of nanoparticles
that were produced by the different ir-
radiation durations. Figure 1 shows
transmission electron microscope im-

ages of the 7 samples, from shorter to longer irradiation
times. The average particle sizes and their corresponding
SDs are shown in Table 1. The transmission electron micro-
scope images show the presence of gold nanoparticles in all
irradiated samples, meaning that it is possible to synthesize
nanoparticles even with a small dose. Despite the addition of
polyvinylpyrrolidone to the solution, it was not possible to
avoid agglomeration of some particles. This agglomeration
may have been due to the time that elapsed between irradi-
ation and microscopy, because the samples could not be
transported and analyzed until after the activity had decayed.
However, most particles remained nonagglomerated.

The variation in average particle size and SD with
irradiation time is shown in Figure 2. Following a power
trend, both the size and the SD of gold nanoparticles de-
creased with longer radiation times, with R2 values of 0.968
and 0.996, respectively. After 60 min of irradiation, a 93%
reduction in particle size was achieved. Most of the reduc-
tion occurred during the first 10 min of irradiation (79%).
Afterward, the average reduction rate dropped to 0.3%
per minute. The same behavior was observed for SD.

The variation in particle size with irradiation time can be
explained by a nucleation-and-growth theory. Low absorbed
doses create few nucleation points at which the atoms can
begin to coalesce, and nanoparticles grow until the metal

FIGURE 1. Transmission electron micrographs of radioactive gold nanoparticles that
were irradiated at 200 kW for 0.5 min for sample 1 (A), 1 min for sample 2 (B), 3 min for
sample 3 (C), 5 min for sample 4 (D), 10 min for sample 5 (E), 30 min for sample 6 (E),
and 60 min for sample 7 (G).

TABLE 1
Average Particle Size with Irradiation Time

Sample
Irradiation
time (min)

Average
size (nm)

SD
(nm)

SD
(%)

1 0.5 271 207 76
2 1 221 126 57
3 3 124 75 60
4 5 86 47 55
5 10 56 34 61
6 30 37 16 43
7 60 19 8 42
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precursor is consumed. However, higher absorbed doses
produce a higher number of nucleation points, resulting in
nanoparticles of smaller size. This argument is supported
by previous studies (24,31).
The size distribution of gold nanoparticles used in cancer

treatment has been found to be a key parameter in im-
proving retention in tumors, interstitial interaction within
the body, and an efficient cell-killing process (32–34). Par-
ticles between 1 and 100 nm in diameter are smaller than
the pores in typical tumor vasculature, allowing the parti-
cles access to tumor cells (34). Meanwhile particles smaller
than 10 nm are efficiently removed from the body through
the kidneys. Sensitization and cell uptake were greater for
nanoparticles approximately 50 nm in diameter than for

other sizes (35–39). For this reason, 50-nm particles repre-
sent the most promising option for cancer treatment. In this
study, sample 5 (irradiated for 10 min) was populated by
gold nanoparticles with the best characteristics for use in
cancer treatment, with an obtained average particle size of
56 nm and an SD of 34 nm. Figure 3, which graphs particle
population versus probability for sample 5, shows that 95%
of the particles fell into the acceptable size range for cancer
treatment (10–100 nm) and that 32% were at the preferred
size (40–60 nm). The largest particle obtained in sample 5
was 296 nm in diameter; because this particle fell into an
isolated size range, it was probably due to particle agglom-
eration.

Chemical composition was verified using energy-dispersive
spectroscopy to determine the possible presence of other
chemical species through contamination or by-products.
Figure 4 shows the energy dispersive spectroscopy graph
for sample 5, and Table 2 shows the composition—in
weight percentage and atomic percentage—and the uncer-
tainty for each element found in the spectrum. These anal-
yses were performed for all samples, with the results being
99% similar to those for sample 5.

As shown in Table 2, the weight percentage of gold in
the sample (71.7%) demonstrated effective reduction of
gold, as well as production of metallic gold nanoparticles
without foreign contamination. The presence of chlorine
in the spectrum was expected because of the presence of
chloride in the precursor solution. The presence of copper
and carbon was due to the sample holder (polyvinyl formal/
carbon on 300-mesh copper) of the transmission electron
microscope.

FIGURE 3. Particle population vs. probability for sample 5.

FIGURE 4. Energy-dispersive
spectroscopy graph for
sample 5.

TABLE 2
Weight and Atomic Composition of Elements in the

Spectrum

Element Weight (%) Atomic (%) Uncertainty (%)

Chlorine 28 69 3
Gold 72 31 10

FIGURE 2. Variation of average size and SD with irradiation
time.

282 JOURNAL OF NUCLEAR MEDICINE TECHNOLOGY • Vol. 46 • No. 3 • September 2018



Finally, the activity of the produced solutions was
calculated for thermal, intermediate, and fast neutron
populations to estimate their potential suitability for
cancer treatment:

A½Bq� 5 ðM V NaÞ s f

�
1 2 e

�
2 ln  2  t
T1=2

��
;

where M is the molarity of the irradiated samples (0.002 6
0.0001 M); V is the sample volume (0.002 6 0.0001 L); Na

is Avogadro’s number; st, si, and sf are, respectively, the
thermal neutron capture cross section (98.7 · 10224 cm2),
resonance integral (1,550 · 10224 cm2), and fast neutron
capture cross section (6.22 · 10224 cm2) for 198Au; f is the
neutron flux of the Missouri University of Science and
Technology reactor at full power (2.94 6 0.02 · 1012,
1.86 6 0.04 · 1012, and 2.65 6 0.03 · 1012 n/cm2�s, for
st, si, and sf , respectively) (40); t is the irradiation time for
each sample (60.5 s); and T1/2 is the half-life for 198Au
(2.695 d). Table 3 shows the total calculated activities (in
MBq/mL of irradiated solution) of all samples.
In comparison with a previous study (13), samples 6 and

7 reached adequate activity to treat cancer tumors (.15
MBq/mL) whereas the other samples reached lower activ-
ities (,10 MBq/mL). However, the nanoparticles obtained
from sample 5 showed the appropriate morphology to im-
prove tumor retention and interstitial interaction in tumor
vasculature.

DISCUSSION

Single-step synthesis of radioactive gold nanoparticles
was successfully accomplished using a research nuclear
reactor. The nanoparticles exhibited physical, chemical, and
radioactive characteristics that allow potential use in cancer
diagnosis and treatment. The use of a nuclear reactor
allowed simultaneous g- and neutron irradiation, producing
radioactive nanoparticles and reducing production time. Fu-
ture work will include studies on the effect of different
irradiation doses on particle synthesis, nucleation site den-
sity, and other nanoparticle characteristics, as well as studies
to determine the radiochemical purity of the nanoparticles. In
vitro and in vivo studies of these radioactive nanoparticles to

identify their suitability and effectiveness as cancer treat-
ments are also needed. Further fine-tuning of the irradiation
and precursor parameters of the radioactive nanoparticles is
recommended to optimize their morphology.

CONCLUSION

Direct production of chemically stable radioactive gold
nanoparticles was successfully accomplished using the
Missouri University of Science and Technology reactor.
The nanoparticles had physical and radioactive character-
istics potentially useful for cancer treatment and diagnosis.
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