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Filtered backprojection (FBP) algorithms reduce image noise by
smoothing the image. Iterative algorithms reduce image noise
by noise weighting and regularization. It is believed that iterative
algorithms are able to reduce noise without sacrificing image
resolution, and thus iterative algorithms, especially maximum-
likelihood expectation maximization (MLEM), are used in nu-
clear medicine to replace FBP algorithms. Methods: This short
paper uses counter examples to show that this belief is not true.
We compare image noise variance for FBP and MLEM recon-
structions having the same spatial resolution. Results: The truth
is that although MLEM suppresses image noise, it does so by
sacrificing image resolution as well; the performance of win-
dowed FBP may be better than that of MLEM in our case study.
Conclusion: The myth of the superiority of iterative algorithms
is caused by comparing them with conventional FBP instead of
with windowed FBP. However, we do not intend to general-
ize the comparison results to imply which algorithm is more
favorable.
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Iterative algorithms are widely used in emission and trans-
mission image reconstruction. A clear reason to choose an
iterative algorithm over the filtered backprojection (FBP)
algorithm is the superior noise reduction performance of
the former over the latter (1–3). FBP reduces image noise
by applying a low-pass filter, which causes some spatial
resolution loss. On the other hand, iterative algorithms do
not, in general, use a low-pass filter to suppress noise. In-
stead, they use the weighting factors according to the noise
variance and regularization to control noise.
Many research groups have compared FBP with iterative

algorithms in nuclear medicine image reconstruction (4–7).

Both types of algorithm have advantages and disadvan-
tages. Because there is no embedded low-pass filter in iter-
ative algorithms, they are expected to reduce image noise
without sacrificing image resolution. If compared with FBP,
for a given image resolution, iterative algorithms are ex-
pected to produce an image that is less noisy.

Research on FBP has been relatively quiet in recent
years. In contrast, research on iterative algorithms has been
active—for example, research on generating a more accu-
rate system matrix, developing more computationally effi-
cient methods, and producing more stable solutions (8–12).

By applying maximum-likelihood expectation maximi-
zation (MLEM) as an example of the iterative algorithm,
this paper uses counter examples to show that the ad-
vantages of MLEM over FBP are a myth and that MLEM
suppresses image noise, but only by sacrificing image
resolution as well. If we compare the results of MLEM with
those of windowed FBP, these 2 algorithms can be seen to
perform similarly in terms of noise and resolution. MLEM
may not have clear advantages. However, we do not intend
to generalize the comparison results to imply which algo-
rithm is more favorable.

MATERIALS AND METHODS

In this paper, MLEM and windowed FBP are used to demon-
strate noise performance at different image resolutions. These 2
algorithms control noise using 2 different methods. MLEM uses
different numbers of iterations to regulate noise. FBP uses differ-
ent low-pass filters to filter out noise. It will be shown that image
resolution is affected regardless of the method used to reduce noise.

MLEM
The MLEM considered in this paper has the following form

(13,14):
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where X
ðkÞ
i is the ith image pixel at the kth iteration, Pj is the jth

line-integral (ray-sum) measurement value, and Aji is the contri-
bution of the ith image pixel to the jth measurement. The summa-
tion over the index n is the projector, and the summation over the
index j is the backprojector.
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FBP
Noise-weighted FBP (also known as windowed FBP) was

developed to model and suppress noise (15,16). This algorithm
emulates the gradient descent algorithm and contains a control
index k, which is similar to the iteration number in MLEM. This
windowed FBP is almost the same as conventional FBP, except for
the ramp filter. In conventional FBP, the ramp filter is jωj, where ω
is the frequency discretely sampled from 20.5 to 0.5. In win-
dowed FBP, the ramp filter is modified by a window function
and is expressed as
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RðωÞ;  with  ω 6¼ 0; and Hð0Þ 5 0;

Eq. 2

where RðωÞ is a ramp filter and a is a positive constant to prevent the
algorithm from divergence. In this paper, a is set to 0.0001. Equation
2 can be factored as a ramp filter RðωÞ and a window function
½12ð12awj

jωj Þk�. In practice, there are many versions of ramp filter
RðωÞ associated with various fixed window functions, such as a
rectangular function (also known as the Ram–Lak filter), a sinc func-
tion (also known as the Shepp–Logan filter), a raised cosine function,
a Hamming function, a Hann function, and so on. In addition to the
variable window function ½12ð12awj

jωj Þk�, we use the raised cosine
function as a fixed window for the ramp filter. Precisely, the version
of the ramp filter used in this paper is expressed as

RðωÞ 5 jωjcos2ðωpÞ: Eq. 3

The implementation of Equation 2 is in the Fourier domain of the
sinogram. The weighting factors wj in Equation 2 for all projection
bins are quantized into 11 discrete values, and each of these 11
quantized weighting factors produces a filtered sinogram. A com-
bined sinogram from these filtered sinograms is formed point-by-
point according to the variance of the original sinogram. The
details of the implementation have been previously published (9).

We use the notation a in Equation 2 to represent the step size.
The effect of step size a in Equation 2 can be clearly understood
from the published derivation (9). The notation k in Equation 2
represents the iteration number. The effect of iteration number k in
Equation 2 can be seen from the published derivation (9) as well.
When MLEM reaches a certain image contrast, it stops at iteration
k. However, for windowed FBP, the image contrast is controlled by
the product of ak. To prevent divergence, the parameter a must be
very small. This parameter a can be fixed. Once a is fixed, the
image contrast is determined only by the parameter k.

Computer Simulations
A computer-generated National Electrical Manufacturers As-

sociation NU 4-2008 image-quality phantom (17) was used for the
simulation studies. The phantom is circular and contains 5 hot
lesions of different sizes. The lesions are used for spatial resolu-
tion evaluation. The details of the phantom are given in Table 1
using the MATLAB (The MathWorks, Inc.) phantom format,
where the units for the first 4 columns are the relative dimension
with respect to the array size, and the unit for the last column is the
photon counts. Noiseless projections are calculated analytically
without using pixel discretization. The projection noise is incor-
porated after the noiseless line-integrals are generated.

This paper considers a 2-dimensional parallel-beam imaging
system with a flat 1-dimensional detector. The detector has 180

detection channels (i.e., detection bins), and the projections are
simulated at 180 views over 360�. The image is reconstructed in a
180 · 180 array. The noise for each projection ray is Poisson-
distributed, as in an emission imaging system. In this model, the
noise-weighting factor is the reciprocal of the measurement and
the weighting factor is incorporated in windowed FBP. The Pois-
son noise is naturally modeled in MLEM.

The simulation studies are in 2 steps. In the first step, the noise-
less projections are used to reconstruct the image with 5, 10, 15, 20,
25, 30, 35, 40, and 45 iterations with MLEM. By comparing the line
profiles horizontally across the center of each lesion, the matching
parameter, k, as defined in Equation 2 is found for windowed FBP.
The parameters k in Equation 2 that correspond to iterations 5, 10, 15,
20, 25, 30, 35, 40, and 45 in MLEM are 3,800, 8,200, 12,000, 17,000,
22,000, 28,000, 33,000, 38,000, and 43,000, respectively.

In the second step, the noisy projections are used, and the images
are reconstructed in pairs. The uniform nonzero background region
within the phantom is used to calculate image noise.

RESULTS

The noiseless reconstruction pairs are shown in Figure 1,
where pairs of windowed FBP reconstructions and MLEM re-
constructions are matched in terms of spatial resolution. The
reconstructed image pairs using noisy data are shown in Figures
1–2. The line profiles shown are drawn from the corresponding
reconstructions with noiseless data. The 5 line-profiles drawn
horizontally across the center of the 5 lesions are pieced together
and displayed in a single box. The noise in a nonzero uniform
background region within a rectangular shape is calculated as
SD divided by the mean value (i.e., the normalized SD). These
normalized SDs are summarized in Table 2.

Because the uniform regions in the image are not uniform
at lower iterations, the image reconstructed with noisy data is

TABLE 1
Parameters (Fractions of Image Size) for National Electrical

Manufacturers Association NU 4-2008 Phantom

x0
(center)

y0
(center)

A

(long-axis)

B

(short-axis)

ϕ
(rotation)

Image

intensity

0.0 0.0 0.60 0.60 0 10
−0.1 −0.3 0.10 0.10 0 10
−0.3 0.05 0.08 0.08 0 10
0.0 0.3 0.06 0.06 0 10
0.3 −0.15 0.04 0.04 0 10
0.3 −0.15 0.02 0.02 0 10

FIGURE 1. Left image is reconstructed with 5 iterations of
MLEM. Middle image is reconstructed with windowed FBP
with k 5 3,800. Right image is same as middle image except
outside object image values are set to zero. Line profiles are for
5 lesions. Solid lines are from windowed FBP images; dashed
lines are from MLEM images.
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normalized by the image reconstructed with noiseless data
with the same parameters, such as the iteration number.
The images reconstructed with windowed FBP are displayed

twice. In one display, the images are displayed at full scale,
from the image global minimum to maximum. In the second
display, the near-zero image values outside the object are set to
zero. MLEM does not allow negative image values, whereas
FBP does. The second display shows greater comparability
between the images reconstructed using the 2 algorithms.
For the same spatial resolution, MLEM images are

slightly noisier than windowed FBP images for the chosen
window functions. However, if some other window func-
tions are used, the MLEM images can be less noisy than the
windowed FBP images (not shown). We do not generalize

our results to claim which algorithm is better, because the
results vary with different window functions, object shapes,
and noise levels. This paper presents only a counter example.

DISCUSSION

When the iteration number is small, only lower-frequency
components are included in the reconstructed image. As the
iteration number increases, higher-frequency components are
included in the image. Thus, image resolution is directly
related to the iteration number.

MLEM is a nonlinear algorithm, whereas windowed FBP
is linear. They behave differently. Equation 2 shows that the
role of the noise-weighting factor wj is to modify the step
size a in windowed FBP. A larger step size a is equivalent
to more iterations. A smaller step size a is equivalent to
fewer iterations. Since the iteration number is directly re-
lated to the spatial resolution, the step size is also directly
related to the spatial resolution. A smaller step size corre-
sponds to a lower resolution.

After the weighting factors wj are introduced to FBP, the
effective step size is awj. As a consequence, a smaller
weighting factor wj corresponds to a lower resolution. In
other words, applying a small weighting factor wj to a pro-
jection ray pj is equivalent to applying a low-pass filter to
pj. For the noisier projections, smaller weighting factors are
assigned—equivalent to smoothing these projections with a
low-pass filter.

It is safe to state that MLEM suppresses noise by smoothing,
which degrades image resolution. Therefore, it is an unfounded
myth that MLEM can reduce noise without sacrificing
image resolution whereas FBP gives poorer resolution if
noise is to be suppressed. The myth is caused by comparison

FIGURE 2. Left image in each panel is reconstructed with various iterations of MLEM. Middle image is reconstructed with
windowed FBP with various value of k. Right image is same as middle image except outside object image values are set to
zero. Line profiles are for 5 lesions. Solid lines are from windowed FBP images; dashed lines are from MLEM images. (A) Left: 10
iterations; middle: k5 8,200. (B) Left: 15 iterations; middle: k5 12,000. (C) Left: 20 iterations; middle: k5 17,000. (D) Left: 25 iterations;
middle: k 5 22,000. (E) Left: 30 iterations; middle: k 5 28,000. (F) Left: 35 iterations; middle: k 5 33,000. (G) Left: 40 iterations; middle:
k 5 38,000. (H) Left: 45 iterations; middle: k 5 43,000.

TABLE 2
Noise Comparison for Reconstructions with MLEM
and Windowed FBP, When Images Are at Same

Lesion Contrast

Iteration

no. for
MLEM

k for

windowed
FBP

Normalized

noise SD for

MLEM
image

Normalized

noise SD for

windowed
FBP image

5 3,800 0.0286 0.0277
10 8,200 0.0544 0.0530
15 12,000 0.0786 0.0711
20 17,000 0.1015 0.0904
25 22,000 0.1233 0.1058
30 28,000 0.1442 0.1205
35 33,000 0.1643 0.1303
40 38,000 0.1837 0.1384
45 43,000 0.2024 0.1452
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of MLEM with conventional FBP instead of with windowed
FBP. If we compare the MLEM results with the windowed
FBP results, these 2 algorithms perform similarly in
terms of noise and resolution. MLEM may not have clear
advantages.
The performance of both MLEM and windowed FBP can

be further improved by incorporating some a priori infor-
mation, which is sometimes referred to as Bayesian re-
construction (a topic that is beyond the scope of this paper).
In noiseless data simulation studies, images recon-

structed by many iterative algorithms show high-frequency
noise when the iteration number is extremely high. This
image noise is caused by pixelization of the image array, in
which the image is represented by flat, square pixels. The
pixilated-image projection cannot exactly match the ana-
lytically generated projection. This discrepancy causes the
high-frequency noise in the image. Interestingly, this noise
is not observed in FBP reconstruction.

CONCLUSION

This paper has presented some counter examples to show
that MLEM and windowed FBP have similar noise-versus-
resolution trade-offs. For image reconstruction in modern-
day nuclear medicine practice, the use of MLEM and its
accelerated versions has almost replaced the use of FBP for
2 reasons: the general belief that iterative algorithms can
handle noise better than FBP, and the ability of an iterative
algorithm to perform nonuniform attenuation correction,
especially in SPECT. Our paper can positively affect the
first aspect. Windowed FBP handles noise equally as well
as MLEM. The significant advantage of windowed FBP is
its fast reconstruction time, which is clinically important
especially for PET, with its large datasets and lengthy
reconstructions using iterative algorithms.
Windowed FBP currently cannot correct for nonuniform

attenuation in SPECT. In PET, attenuation can be corrected
in the sinogram domain, and windowed FBP can thus be
used for reconstruction. We believe that time-of-flight and
detector response modeling can be handled by a noniterative
algorithm, but this issue is beyond our present scope and
would require future development. This work focuses mainly
on image noise issues in nuclear medicine imaging.
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