the patient later succumbed to the disease. A personalized approach in the form of peptide receptor chemoradionuclide therapy with acceptable toxicities is appropriate when other treatment options are limited (5,6).

CONCLUSION

Peptide receptor chemoradionuclide therapy may have a role in ¹⁸F-FDG- and SSTR-avid inoperable and wide-spread paraganglioma when other options are either limited or ineffective.

DISCLOSURE

No potential conflict of interest relevant to this article was reported.

REFERENCES

- Cascón A, López-Jiménez E, Landa I, et al. Rationalization of genetic testing in patients with apparently sporadic pheochromocytoma/paraganglioma. Horm Metab Res. 2009;41:672–675.
- Gupta SK, Singla S, Karunanithi S, Damle N, Bal C. Peptide receptor radionuclide therapy with ¹⁷⁷Lu-DOTATATE in a case of recurrent carotid body paraganglioma with spinal metastases. *Clin Nucl Med.* 2014;39:440–441.
- Wald O, Shapira OM, Murar A, Izhar U. Paraganglioma of the mediastinum: challenges in diagnosis and surgical management. J Cardiothorac Surg. 2010;5:19.
- Elston MS, Meyer-Rochow GY, Conaglen HM, et al. Increased SSTR2A and SSTR3 expression in succinate dehydrogenase: deficient pheochromocytomas and paragangliomas. *Hum Pathol.* 2015;46:390–396.
- Simsek D, Kuyumcu S, Turkmen C, et al. Can complementary ⁶⁸Ga-DOTATATE and ¹⁸F-FDG PET/CT establish the missing link between histopathology and therapeutic approach in gastroenteropancreatic neuroendocrine tumors? *J Nucl Med*. 2014;55:1811–1817.
- Puranik AD, Kulkarni HR, Singh A, Baum RP. Peptide receptor radionuclide therapy with ⁹⁰Y/¹⁷⁷Lu-labelled peptides for inoperable head and neck paragangliomas (glomus tumours). Eur J Nucl Med Mol Imaging. 2015;42:1223–1230.

Erratum

In the article "Comparison of Accuracy Between 13 C- and 14 C-Urea Breath Testing: Is an Indeterminate-Results Category Still Needed?" by Charest and Bélair (*J Nucl Med Technol.* 2017;45:87–90), the "Analysis of Negative Results" section incorrectly states that the average of 366 patients with negative 14 C results was 0.0118 ± 0.0050 cps. The correct average is 0.118 ± 0.050 cps. The "Analysis of Positive Results" section incorrectly states that the average of 196 patients with positive 14 C results was 0.300 ± 0.172 cps, with a corresponding 5.210 ± 0.172 S/CO. The correct average and corresponding S/CO are 2.998 ± 1.719 cps and 9.084 ± 5.210 , respectively. In addition, the "Analysis of Positive Results" section incorrectly states that the average 20.658 ± 10.359 % Δ was determined from 119 patients with negative 13 C results; the average was obtained from 119 patients with positive 13 C results. The authors regret these errors.