Accumulation of 99mTc-Diphosphonate at Sites of Intramuscular Iron Therapy: Case Report

Anthony L. Mazzola, Milton H. Barker, and Robert E. Belliveau

Salem Hospital, Salem, Massachusetts

Nonosseous accumulation of 99mTc-distannous diphosphonate (Osteoscan) was noted at the sites of intramuscular iron dextran (Imferon) injection. The possible mechanisms and relationships to other instances of nonosseous localization are discussed.

The localization of 99mTc-labeled phosphate bone scanning compounds within sites of extraosseous and noncalcified tissue pathology has been reported. This has included concentration within infarcts (1-4) and neoplasms (5-7). The present report adds to this list by describing a patient with accumulation of 99mTc-diphosphonate (99mTc-Sn-EHDP) within sites of intramuscular iron therapy.

Case Report

A 64-year-old white man was admitted to Salem Hospital for evaluation of nonresolving prostatitis. Gentamycin antibiotic therapy was begun. Laboratory results showed a marked leukocytosis, thrombocytopenia, and severe anemia. Skin tests for TB and mumps showed anergic responses. Diagnostic consideration was that the patient had an occult neoplasm, perhaps of hematopoietic origin. The patient's anemia became more severe and required transfusions, as well as iron replacement by Imferon (Lakeside Laboratory) for six days with 2 ml administered to each buttock daily. Radiographic studies were noncontributory and radionuclide liver, pancreas, bone, and gallium studies were performed. The 99mTc-Sn-EHDP bone scan was performed three days after the last iron dose and revealed a normal distribution of isotope but with symmetric extraosseous accumulation in the buttocks (Fig. 1). Total body 67Ga-citrate survey, including buttock regions, for four days following the bone scan failed to reveal any significant sequestration of activity. Routine radiographs of the pelvis failed to reveal any sites of calcification. The patient was eventually discharged following workup and resolution of his prostatitis but with no evidence of a neoplasm.

Chromatographic characteristics of 99mTeO$_2$, 99mTc-Sn-EHDP, and possible interference by Imferon, dextran (Pharmacia), and Fe(OH)$_3$ were tested using Gelman Sepachrom system, ITLC type SG chromatographic medium (Fisher Scientific), and previously described solvent separation techniques (8, 9). Impaired mobility of 99mTc-Sn-EHDP was noted in the presence of Imferon and all its individual components while 99mTeO$_2$ demonstrated similar interaction with Imferon and Fe(OH)$_3$ (Table 1).

Discussion

The localization of phosphate bone-seeking radionuclide within a variety of nonosseous tissues has been reported. Neoplastic localization has been noted in breast (5) and lung (6) tumors, malignant melanoma, and Hodgkin's disease (7). Nonneoplastic sequestration of bone-seeking agents has been seen in cerebral (2, 4) and myocardial infarcts (1, 3) as well as inflammatory disorders of the skeletal muscle (10). All of these processes most likely shared an inflammatory component which included cellular response, local hyperemia, as well as disruption of tissues with the liberation of ionic and proteinaceous materials. Speculation as to basis of radionuclide location has included increased blood flow (11), binding to liberated enzymes (12), as well as binding to ionic substances, particularly calcium and phosphate (13).

In this case localized hyperemia in response to the administered iron injections most likely occurred. This may have also included a cellular response. However, the latter is less likely, as a followup 67Ga-citrate study failed to show any propensity for radiopharmaceutical localization. Another possibility included the complexing or binding of 99mTc-labeled bone agent to liberated proteins or ions. More significantly, in vitro chromatographic mobilities of 99mTc-Sn-O$_2$ and 99mTc-EHDP were altered by the presence of Imferon and its components.

For reprints contact: Anthony L. Mazzola, Dept. of Nuclear Medicine, Salem Hospital, 81 Highland Ave., Salem, MA 01970.
TABLE 1. Instant Thin Layer Chromatography Data of 99mTc-Sn-EHDP, Imferon, and its Components

<table>
<thead>
<tr>
<th>Compound</th>
<th>R_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>99mTc O$_2$</td>
<td>100</td>
</tr>
<tr>
<td>99mTc Sn-EHDP</td>
<td>75</td>
</tr>
<tr>
<td>99mTc O$_2$ and Imferon</td>
<td>24</td>
</tr>
<tr>
<td>99mTc Sn-EHDP and Imferon</td>
<td>10</td>
</tr>
<tr>
<td>99mTc O$_2$ and Dextran</td>
<td>100</td>
</tr>
<tr>
<td>99mTc Sn-EHDP and Dextran</td>
<td>20</td>
</tr>
<tr>
<td>99mTc O$_2$ and Fe(OH)$_3$</td>
<td>24</td>
</tr>
<tr>
<td>99mTc Sn-EHDP and Fe(OH)$_3$</td>
<td>35</td>
</tr>
</tbody>
</table>

h, while 60–68% remains to be absorbed over several days. The remainder may be gradually absorbed over a period of several months or longer. Another observer (14) has briefly described accumulation of 99mTc-diphosphonate in areas of Imferon injection and attributed the finding to the combination of reduced technetium with Fe(OH)$_3$, as it is released from the iron dextran complex. However, our results showed that reduced 99mTc-Sn-EHDP not only combined with Fe(OH)$_3$, but also with dextran. Technetium-99mpertechnetate failed to interact with dextran. Therefore, the dextran interaction with 99mTc-Sn-EHDP suggested a diphosphonate-dextran complex as another mechanism of localization.

This case emphasized that local factors other than neoplasm or inflammation may contribute to nonosseous accumulation of isotope. The possibility of iatrogenic factors due to diagnostic or therapeutic maneuvers should be considered as a potential cause of nonosseous localization of bone-seeking agents.

References

SNM CENTRAL CHAPTER TECHNOLOGIST SECTION ANNUAL FALL MEETING

October 9, 1976 Wisconsin Center Madison, Wisconsin

The Annual Fall Meeting of the Central Chapter Technologist Section, SNM, will be held Saturday, Oct. 9, 1976, at the Wisconsin Center, University of Wisconsin, Madison.

Registration begins at 7:30 a.m. In addition to the educational program, there will be a Technologist's Business Meeting beginning at 10:00 a.m.

An application has been made for VOICE accreditation.

For further information contact:

Greg Zeuske
Dept. of Nuclear Medicine
Waukesha Memorial Hospital
Waukesha, WI 53186