
Gibbs Artifact Reduction by Nonnegativity
Constraint

Gengsheng L. Zeng

Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, Utah

This paper proposes a 2-step image reconstruction method in
which the nonnegativity constraint in the iterative maximum-
likelihood expectation maximization (MLEM) algorithm is used
to effectively reduce Gibbs ringing artifacts. Methods: Gibbs
artifacts are difficult to control during imaging reconstruction.
The proposed method uses the postprocessing strategy to sup-
press Gibbs artifacts. In the first step, a raw image is recon-
structed from projections without correction for point spread
function (PSF). The attenuation correction can be performed
in the first step by using, for example, the iterative MLEM or
ordered-subsets expectation maximization (OS-EM) algorithm.
The second step is a postprocessing procedure that corrects for
the PSF blurring effect. If the target features (e.g., hot lesions)
have a positive background, removing the background before
application of the postprocessing filter significantly helps with
target deblurring and Gibbs artifact suppression. This postpro-
cessing filter is the image-domain MLEM algorithm. The back-
ground activity is attached back to the foreground after lesion
sharpening. Results: Computer simulations and PET phantom
studies were performed using the proposed 2-step method.
The background removal strategy significantly reduced Gibbs
artifacts. Conclusion: Gibbs ringing artifacts generated during
image reconstruction are difficult to avoid if compensation for
the PSF of the system is needed. The strategy of separating
image reconstruction from PSF compensation has been shown
effective in removal of Gibbs ringing artifacts.
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Since Lucy and Richardson’s pioneering work (1,2), the
Lucy–Richardson algorithm has become popular in image
deblurring, because this algorithm provides satisfactory de-
blurred images under noisy conditions and with stationary
and nonstationary point-spread-function (PSF) models.
This algorithm is better known as the maximum-likelihood
expectation maximization (MLEM) algorithm in the med-

ical imaging community (3,4). Like many other deblurring
algorithms, the Lucy–Richardson algorithm suffers from
edge-overshoot artifacts (5). The overshoot and ringing ar-
tifacts around sharp changes in image contrast are much
like the well-known Gibbs phenomenon caused by the trun-
cation of a Fourier series of a discontinuous function. At
sharp edges the contrast is high, and Gibbs artifacts are
difficult to avoid when the image is being deblurred.

A typical strategy in handling Gibbs ringing artifacts is
to reduce Gibbs artifacts with compromised resolution (6).
The reduction of Gibbs artifacts can be achieved by blur-
ring the input image so that the data do not contain such
high-frequency components. Equivalently, one can use a
narrower PSF for the kernel model in the Lucy–Richardson
algorithm. Therefore, one must sacrifice some resolution to
suppress the artifacts.

Different from the typical strategy, under some circum-
stances one can obtain a Gibbs-artifact–free image without
sacrificing image resolution, taking advantage of the nonne-
gativity property of the Lucy–Richardson algorithm. This
method was first applied byMagain et al. in deblurring astro-
nomic images (7). Those authors pointed out that “This pos-
itivity constraint is the main inhibitor of the ringing around
point sources: by forbidding the negative lobes, it automati-
cally reduces the positive ones since the mean level must be
compatible with the observed data.” However, this strategy
cannot be directly applied to the iterative MLEM algorithm
that is commonly used in SPECT and PET image reconstruc-
tion, because thebackgroundcannotbe separatedand removed
from the projections. A new 2-step image reconstruction and
deblurring method will be proposed in the next section.

Over the years, many investigators have devoted a lot of
effort to combat Gibbs artifacts. Application of the wavelet
transform has yielded good results in reducing the Gibbs
effect (8). The wavelet transform is a powerful tool but can be
difficult to use because of the complexity of selecting the
proper basis function and the nonlinear process of filtering
the wavelet coefficients. In addition to the wavelet-based filter-
ing methods, there are many modern image filtering strategies,
such as the gaussian smoothing method with a Dirichlet inte-
gral to measure the smoothness (9), the anisotropic diffusion
method (10), the Rudin–Osher–Fatemi total variation method
(11,12), the neighborhood and the Wiener local empiric filters
(13), the discrete universal denoiser (14), and unsupervised
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information-theoretic, adaptive filtering (15). Most of these
modern filtering techniques have been developed for non-
blurred picture processing, which is difficult to incorporate
with a specified PSF. These techniques are also sophisticated
and have not yet attained a desirable level of applicability in
routine medical image processing. This paper will apply the
well-developed Lucy–Richardson (i.e., the MLEM) deblurring
algorithm in the SPECT and PET reconstructed image domain
and propose a new 2-step image reconstruction and deblurring
method to reduce Gibbs artifacts.

MATERIALS AND METHODS

The Lucy–Richardson, or MLEM, Algorithm

It is suggested that image reconstruction in SPECT and
PET be achieved in 2 steps. In the first step, the image is re-
constructed from projections without PSF compensation. The
attenuation correction can be performed if the user desires.
The user has freedom to choose the image reconstruction
algorithm, which can be analytic or iterative. Today the most
popular image reconstruction algorithm is the iterative MLEM
algorithm or its accelerated version—the iterative ordered-
subsets expectation maximization (OS-EM) algorithm.
An image is first reconstructed in such a way that Gibbs

ringing artifacts do not appear in the reconstruction. In fact,
partial (not full) PSF compensation can be performed during
the image reconstruction stage as long as it does not violate our
requirement of “no Gibbs ringing artifacts are generated.” This
partial PSF compensation can be achieved using a narrower
PSF than the full PSF in the image reconstruction algorithm.
If the full PSF is used during image reconstruction, Gibbs

artifacts will most likely appear in the reconstructed image.
The reconstruction obtained in this first step is referred to as
the raw reconstruction.
The main purpose of the first step is image reconstruction,

and the main purpose of the second step is image PSF
compensation. Hereafter, this paper will focus on the second
step of the method.
In the second step of the proposed method, the raw

reconstruction is processed by another MLEM algorithm.
This MLEM algorithm is somewhat different from the one
that is commonly used in SPECT and PET image recon-
struction. The MLEM algorithm used in the second step of
the proposed method is totally in the reconstructed image
domain: both the input data and the output image are
reconstructed images of the same dimension. In the rest of
the paper, this reconstructed-image-domain MLEM algo-
rithm will be referred to as the Lucy–Richardson algorithm.
The Lucy–Richardson algorithm assumes the following

image blurring model:
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pij aj; Eq. 1

where pij is the PSF with the constraint that +
j

pij 5 1; aj is

a pixel in the true, original, nonblurred image; and bi is a
pixel in the blurred image. The Lucy–Richardson algorithm

is an iterative image-deblurring procedure (trying to
recover the true image aj from a blurred image bi), which
can be formulated as
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where k is the iteration index and a
ðkÞ
j is the deblurred image

estimation at the kth iteration.
If an input image has a positive background and the Lucy–

Richardson algorithm is used for deblurring, Gibbs artifacts
are severe in the deblurred image. However, if the back-
ground is removed before the Lucy–Richardson image-
deblurring procedure is applied, the artifacts are significantly
reduced and the image without background is sharper. There-
fore, an image-deblurring method is proposed that first
removes the target background and then deblurs the target
using the Lucy–Richardson algorithm. The background is
different in different regions of a SPECT or PET reconstruc-
tion. Therefore, the proposed method is a local image pro-
cessing method. This method works well for point-source
targets. Here, a target is a region of interest to be deblurred.

If the target is not a point source but is a relatively large
hot region, one can artificially determine a hard upper limit
for the image in each iteration of the Lucy–Richardson
algorithm. If the updated image pixel value is greater than
the preset hard limit, the new image pixel value is assigned
as the hard limit value.

Hot Lesion Enhancement

Our proposed method can be referred to as a local image-
deblurring technique. The deblurring procedure is presented
as follows. An object—say, a lesion—is first identified.
Second, the background around the object is removed
by threshold segmentation. Third, the iterative Lucy–
Richardson algorithm is applied on the segmented region
of interest with a specified PSF. The PSF is the kernel that
needs to be deconvolved. If the hot lesion is relatively large,
a hard upper limit is set as the maximum image value in the
unfiltered large hot region. The selection of the upper limit
is based on the fact that for a large, flat-top hot region,
image blurring does not decrease the maximum image
value and blurs only the edges. However, for a pointwise
target, image blurring significantly reduces the maximum
image value, and it is not proper to set an upper limit.
Finally, the segmented background is attached back to the
deblurred foreground object.

Cold Lesion Enhancement

The method presented above can potentially be applied
to a cold-lesion enhancement task by treating the back-
ground as a large hot region and the cold lesion as the
background. A cold lesion can also be deblurred by first
being converted into a hot lesion, simply by the applica-
tion of the inverse gray-scale representation of the image.
As in hot-lesion enhancement, a region containing the lesions
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is first segmented. Before removal of the background, the
image of the subregion is inverted; that is, the image pixel
values are multiplied by 21. Now the cold lesion becomes a
hot lesion. After removal of the background, the background
is zero. At this point, the iterative Lucy–Richardson algorithm
is applied to sharpen the hot lesion with a specified PSF. If
the lesion is relatively large, a hard upper limit is set within
each iteration of the Lucy–Richardson algorithm. Finally, the
sharpened hot lesion is inverted back to a cold lesion and
recombined with the background. In SPECT and PET, cold
lesion detection is common in myocardial imaging and in
some bone tumor imaging. The proposed method can be
applied to estimate the size of a cold lesion. A cold lesion
imaging example is illustrated in the following numeric results.

RESULTS

Example 1: Blurred Image with Hot Lesions

Figure 1 illustrates a 2-dimensional (2D) example. The
phantom had 2 small hot lesions and a positive background.
The image was in a 400 · 400 array. There were 2 hot
lesions 30 pixels apart. The 2 lesions were identical:
1,000 units of intensity and 1 pixel in diameter. The back-
ground was a uniform constant of 1 unit of intensity. The
PSF was a normalized gaussian function with an SD of 30
pixels. The number of iterations was 3,000.
When the background of the raw image was not removed,

Gibbs artifacts appeared at a large number of iterations.
After 3,000 iterations, the lesions could not be resolved.
Additionally, the lesions could not be resolved by iterating
even further. On the other hand, when the background was
removed from the raw image first, the 2 lesions could easily
be resolved and no Gibbs artifacts were generated. Because
the targets were pointlike lesions, no upper limit was used in
the Lucy–Richardson algorithm in this example.
No noise was added in the example shown in Figure 1. After

Poisson noise was added to the raw input image, the procedure

was repeated. The corresponding results are reported in Figure
2. Even with noise, the proposed method clearly outperformed
the regular Lucy–Richardson deblurring method.

Example 2: Blurred Image with Cold Lesions

A 2D cold lesion example is presented in Figures 3 and 4.
No noise was added in the computer simulations in Figure 3.
Figure 4 is the noisy version of the scenario shown in Figure
3. As in the first example, the cold-lesion example showed
the advantage of removing the background of the raw image
before the Lucy–Richardson image-deblurring procedure.
Because the targets were pointlike lesions, no upper limit
was used in the Lucy–Richardson algorithm in this example.

The proposed method did not work well in a cold lesion
enhancement task when the image was noisy. All ill-
conditioned inverse problems are challenging, and cold
lesion enhancement seems to be more challenging than hot
lesion enhancement when the images are noisy. However, it
is clear that the proposed method performed better than the
regular Lucy–Richardson method in cold lesion deblurring
within noisy environments.

Example 3: PET NEMA Phantom Experiment

A National Electrical Manufacturers Association
(NEMA) torso phantom was used in an 18F study, and the
projection data were acquired using a Siemens PET scan-
ner. The phantom dimensions were 24.1 cm (height) · 30.5
cm (width) · 24.1 cm (depth). The phantom had 6 fillable
spheres with inner diameters of 10, 13, 17, 22, 28, and
37 mm. At the center of the phantom was a cold cylinder
51 mm in diameter. The 4 smallest spheres were filled with
a 5-fold higher concentration of 18F than the background.
The 2 largest spheres contained no radioactivity.

A 3-dimensional raw image was first reconstructed using
experimental PET data with 1 iteration of the ordered-
subsets expectation maximization algorithm that had 21
projection data subsets. More than 1 iteration would produce

FIGURE 1. Noiseless computer simu-
lation with 2 hot lesions. First row shows
images, and second row shows central
horizontal profiles of corresponding
images in first row. Left: input blurred
noiseless image that contains 2 hot
pointlike lesions and positive background.
Middle: result by direct application of
regular Lucy–Richardson algorithm. Right:
result of proposed segmentation-filtering
method.
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a noisier reconstruction. No PSF compensation was applied
during image reconstruction. A 2D slice that contained all 6
spheres was selected for postfiltering experiments.
The 2D images were in 168 · 168 arrays. The input raw

reconstruction was stored in a 1-byte integer array with a
maximum value of 255 and a minimum of 0. The PSF used
in the iterative Lucy–Richardson algorithm was a 2D gaus-
sian function stored in a 21 · 21 float array, and the SD of
the 2D gaussian function was 4.5 pixels. A threshold of 68
was selected to segment the hot lesions. After segmenta-
tion, the minimum value of the hot lesion base was zero,
and the maximum value of the hot lesions was chosen as the
upper limit. The number of iterations chosen for the Lucy–
Richardson algorithm was based on the trade-off of reso-
lution recovery and noise. The lesions were fairly large

compared with the point sources. Lesion images would
have appeared noisier if a higher number of iterations had
been used. Ten iterations of the Lucy–Richardson algorithm
were used to deblur the hot lesions. Then, the sharpened hot
lesions were added back to the segmented background.

To sharpen the cold lesions, a new threshold of 50 was
chosen to segment the image obtained from the hot lesion
deblurring steps. The upper limit was set at 50. The lower-
pixel-intensity segmented image was inverted. Ten itera-
tions of the Lucy–Richardson algorithm were applied to the
inverted, lower-pixel-intensity segmented image. Finally,
the filtered, inverted, lower-pixel-intensity segmented image
was inverted again and added to the upper-pixel-intensity
segmented image. Here, the chosen number of iterations
was based on the resolution recovery and noise trade-off.

FIGURE 2. Noisy computer simulation
with 2 hot lesions. First row shows
images, and second row shows central
horizontal profiles of corresponding
images in first row. Left: input blurred
noisy image that contains 2 hot pointlike
lesions and positive background. Middle:
result by direct application of regular
Lucy–Richardson algorithm. Right: result
of proposed segmentation-filtering method.

FIGURE 3. Noiseless computer simulation
with 2 cold lesions. First row shows images,
and second row shows central horizontal
profiles of corresponding images in first
row. Left: input blurred noiseless image
that contains 2 cold pointlike lesions and
positive background. Middle: result by
direct application of regular Lucy–Richardson
algorithm. Right: result of proposed segmen-
tation-filtering method.
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In this case, sharpening filtering was applied twice to the
2D image. The first filtering was applied to image intensities
in the range of 68–255, and the second filtering was applied
to the image in the intensity range of 0–50. The image in the
intensity range of 50–68 was not filtered. The filtering results
of this PET image are shown in the middle row of Figure 5.
The image in the bottom row of Figure 5 was the result of

directly applying 10 iterations of the Lucy–Richardson
algorithm without segmentation. Direct application of the
Lucy–Richardson algorithm generated significant Gibbs
ringing artifacts, whereas the proposed segmentation-filter-
ing method was almost free of Gibbs artifacts.
All hot lesions are supposed to have the same radio-

activity concentration. Because of the partial-volume effect
(i.e., image blurring) in this example, hot lesions in the
original blurred raw reconstruction appeared to have differ-
ent concentrations, as can easily be seen by looking at the
line profile drawn across the 2 hot lesions. After deblurring
using the proposed method, the line profile (which is
labeled as “Profile along lower line” in Fig. 5) shows that
the 2 hot lesions now have the same concentration.
However, quantitative recovery of the image for the cold

lesions is not as effective as that for the hot lesions. The line
profiles labeled as “Profile along upper line” in Figure 5
show that the edges of the cold lesions are not effectively
sharpened, and the cold lesion pixel values are above zero.
The scattering effect could be making the cold lesions hot-
ter than they should be. Photon scattering was not compen-
sated for in this phantom study.

DISCUSSION

In this paper, the proposed 2-step Gibbs artifact–control-
ling method is illustrated with 2D simulated point source and
PET phantom data only, with simple cases of constant back-
ground and isointensity target objects, and stationary PSF.
In realistic clinical scenarios, the source distribution is

3-dimensional, the PSF is nonstationary, the background is
heterogeneous, and the target objects have variable sizes.
For these real-world scenarios, the challenges in applying
the proposed method are in the segmentation step. Because
of the heterogeneous background, it is impractical to have a
universal threshold to perform segmentation. The image-
sharpening step must be implemented locally. After the
raw image is reconstructed in the first step, the technologist
needs to interactively choose some targets to be sharpened in
the second step, 1 target at a time. For each target, 2 regions
must be circled by the technologist: the target and the adja-
cent background. This local sharpening approach can be
time-consuming and is a drawback of the proposed method.

If the hot lesion and the cold lesion have the same
background, according to the Poisson statistics, the hot
lesion is less noisy than the background whereas the cold
lesion is noisier than the background. The noise level
difference makes the performance of cold lesion sharpening
worse than that of hot lesion sharpening, as demonstrated in
Figures 2 and 4.

As discussed by Magain et al. (7), removal of the back-
ground may destroy the Poisson property of the image
noise. The Poisson noise model is not an essential require-
ment for the Lucy–Richardson algorithm (3).

The proposed method is not fully automatic and needs
human interaction. When the background is nonuniform,
the proposed method can be applied only locally, and the
local region must be manually drawn before segmentation.

As shown in the middle image of Figure 5, the 2 largest
hot lesions in the PET NEMA phantom study plateau at the
same maximum value, which is, in fact, the preset upper
limit of the image. Image sharpening is an ill-posed prob-
lem and tends to produce noisy images when the data are
corrupted with noise. If an upper limit is not set, the target
image value will keep increasing as the iteration number
increases and the target becomes sharper. Because of noise

FIGURE 4. Noisy computer simulation
with 2 cold lesions. First row shows
images, and second row shows central
horizontal profiles of corresponding
images in first row. Left: input blurred
noisy image that contains 2 cold pointlike
lesions and positive background. Middle:
result by direct application of regular
Lucy–Richardson algorithm. Right: result
of proposed segmentation-filtering method.
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propagation, the image of the target will get noisier at the
same time that the image gets sharper. This phenomenon is
often seen in a typical inverse problem. Thanks to the zero-
background strategy, no Gibbs ringing artifacts are gener-
ated in the resultant image. Gibbs ringing artifacts are the
common by-product of an image-deblurring procedure.
The conventional strategy for reducing Gibbs artifacts

relies chiefly on compromising image resolution (16). The
well-known Lucy–Richardson algorithm is able to provide
Gibbs-artifact–free deblurred images if the input image is
properly segmented and is iteratively filtered separately.
The segmentation idea was inspired by our earlier publica-
tion (17), which does not use the Lucy–Richardson algo-
rithm. It seems that the task of cold lesion deblurring is
more difficult and less effective than hot lesion deblurring.
Like all other deblurring methods, the proposed method is
sensitive to image noise; but even with noise, the proposed
method performs better than the regular Lucy–Richardson
method as indicated by computer simulations and phantom
experiments. The Lucy–Richardson algorithm has been
widely used in astronomy, and the results of many astro-
nomic studies (7,18,19) can be introduced to our nuclear
medicine community.

CONCLUSION

This paper shows that if the nuclear medicine image
reconstruction task is split into 2 steps, Gibbs ringing
artifacts can be significantly reduced. Gibbs artifacts are

better controlled in a postprocessing procedure than in the
image reconstruction procedure.
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