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Masked volumewise principal component (PC) analysis (PCA) is
used in PET to distinguish structures that display different
kinetic behaviors after administration of a tracer. When masked
volumewise PCA was introduced, one article proposed noise
prenormalization because of temporal and spatial variations of
the noise between slices. However, the noise prenormalization
proposed in that article was applicable only to datasets
reconstructed using filtered backprojection (FBP). The study
presented in this article aimed at developing a new noise
prenormalization that is applicable to datasets regardless of
whether they were reconstructed with FBP or an iterative
reconstruction algorithm, such as ordered-subset expectation
maximization (OSEM). Methods: A phantom study was per-
formed to investigate differences in the expectation values
and SDs of datasets reconstructed with FBP and OSEM. A
novel method, higher-order PC noise prenormalization, was
suggested and evaluated against other prenormalization meth-
ods on clinical datasets. Results: Masked volumewise PCA of
data reconstructed with FBP was much more dependent on an
appropriate prenormalization than was analysis of data recon-
structed with OSEM. Higher-order PC noise prenormalization
showed an overall good performance with both FBP and OSEM
reconstructions, whereas the other prenormalization methods
performed well with only 1 of the 2 methods. Conclusion:
Higher-order PC noise prenormalization has potential for
improving the results from masked volumewise PCA on
dynamic PET datasets independent of the type of reconstruc-
tion algorithm.
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PET is a noninvasive imaging modality based on the
principle of annihilation coincidence detection (/). PET is
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used in medical and research applications to visualize the
physiologic interactions between an administered tracer
and targets of interest or other tissues.

A common approach to reducing noise in dynamic PET
data is to sum image volumes within a given time interval. The
drawback of this approach is that the differences in the kinetic
behavior of the tracer in different tissues are hard to discern.

Multivariate analysis methods, such as masked volumewise
principal component (PC) analysis (PCA), have been used on
data from dynamic PET studies to retrieve weighted sums of
image volumes. These components can separate regions where
the tracer has different kinetic behaviors (2,3). In the masked
volumewise PCA method, analysis is applied to a dataset
consisting of whole volumes of dynamic PET data. Before
application of PCA, pixels outside the scanned object are
removed and the remaining pixels are prenormalized to com-
pensate for different levels of noise at different times during
the scan. This noise prenormalization helps PCA to better
separate noise from signal, thus better separating the different
tracer kinetics and reducing the noise in the resulting PCs.

However, the background noise prenormalization associ-
ated with the masked volumewise PCA method is applicable
only to datasets reconstructed with filtered backprojection
(FBP), because the noise prenormalization estimates the
average SD of each slice by calculating the sample SD of
the background. Iterative reconstruction methods, such as
ordered-subset expectation maximization (OSEM), have
much lower noise in regions with low count density and
therefore a significantly lower SD in the background (4).
Therefore, no noise prenormalization is currently used when
masked volumewise PCA is performed on datasets recon-
structed with OSEM.

The aim of this study was to reduce noise in dynamic
PET datasets, reconstructed with either FBP or OSEM,
using masked volumewise PCA.

MATERIALS AND METHODS

Phantom Study

A phantom study was performed to investigate the
differences in expectation value and SD of PET image
volumes reconstructed with FBP and OSEM.
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A phantom with 2 cylindric inserts was used, both 15
mm in diameter. The insert in the upper part of the gantry
was filled with 223 kBq of '8F per milliliter, the insert in the
left part of the gantry with 73 kBq of '3F per milliliter, and
the rest of the phantom with water. The duration of the
emission scan was 90 min.

The study was performed on an eXplore VISTA small-
animal PET scanner (GE Healthcare). The unit contained 2
rings of 18 phosphor sandwich (phoswich) detector mod-
ules capable of acquiring 3-dimensional data with an axial
field of view of 48 mm and an effective transaxial field of
view of 67 mm (5).

Acquired data were reconstructed to 2 different datasets,
using Fourier rebinning followed by 2-dimensional OSEM
(2 iterations and 16 subsets) as well as FBP with ramp and
Hanning filters, both using 5-min frames. The dimensions of
the reconstructed datasets were 175 X 175 x 61 x 18, 175 X
175 pixels with 0.3875-mm sides per transaxial slice, 61
slices with 0.775-mm spacing, and 18 frames of 5 min each.

Three circular regions of interest (ROIs) of equal size
were calculated and drawn, one for each insert and one in a
region where no radioactive substance was present (Fig. 1).
Each ROI had a diameter of 11 mm, which gave 633 pixels
per ROL. To avoid most of the spillover effects, the diameter
was reduced by 4 mm. This value was chosen because the
spatial resolution measured in full width at half maximum
is less than 2 mm for the eXplore VISTA scanner.

The arithmetic mean and sample SD within the ROIs
were calculated for each slice and frame for data recon-
structed with FBP and OSEM. Furthermore, the arithmetic
means of these estimates for all ROIs at a given slice and
frame were calculated.

FIGURE 1.
The 3 ROIs are outlined in white.

Cross-section of phantom reconstructed with FBP.

Data Analysis

All the presented clinical data were analyzed using
masked volumewise PCA with the prenormalization and
PCA methods described in the following sections. The data
in the clinical study were masked using a previously de-
scribed masking method (6). In the phantom study, a vol-
ume of interest (VOI) was created using a simple cylinder
of the size of the phantom. Because the phantom was per-
fectly symmetric and had known dimensions, no image
analytic methods were required to produce a VOL.

Prenormalizations

Two methods are commonly used to prenormalize data
before ordinary PCA. The first is to remove the mean of
each observation, in this article referred to as removal-of-
mean prenormalization. The second is to use standardized
variables, which are acquired by removing the mean and
dividing each observation by its SD.

In PET image volumes reconstructed with FBP, the
background contains a large amount of noise. In 2-dimen-
sional reconstructions of PET data, each slice tends to have
varying levels of noise. Because PCA cannot separate
variance due to signal from variance due to noise, it is
desirable to have each slice scaled with the SD of the noise
to get unit noise variance in each slice.

Background noise prenormalization uses a mask to
separate the background from the object to estimate the
SD of the background in each slice. The actual prenor-
malization calculations are similar to those used in stand-
ardized variable prenormalization except that the SD of the
background in each slice is used instead of the SD of the
whole signal in each frame. This method is used only on
PET data reconstructed with FBP, because image volumes
reconstructed with OSEM have values close to zero in the
background (2).

Higher-Order PC Noise Prenormalization

Higher-order PC noise prenormalization is a novel
method presented for the first time in this article. Much
like background noise prenormalization, it estimates the SD
of the noise in each slice, which is used for prenormalizing
the slices.

Because most of the expectation value in dynamic PET
data is accounted for by the lower-order masked volume-
wise PCs, the SD of the noise can be approximated from the
reconstruction of higher-order PCs.

Higher-order PC noise prenormalization has 3 steps. The
first is to perform masked volumewise PCA on the whole
field of view or the VOI without any prenormalization. The
second step is to reconstruct the dataset using only the
higher-order masked volumewise PCs and estimate the SD
in each slice in the reconstructed data. The third step is to
calculate the prenormalized variables using the equation
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Xix 1s the kth sample in frame i, X; is the arithmetic mean
in frame i, and s, is the sample SD in slice w where the
sample x;; is located within the reconstruction of higher-
order PCs. The whole procedure is illustrated in Figure 2.

Reconstruction from Selected PCs

Because the signal in PET datasets is temporally cor-
related and the noise is not, masked volumewise PCA can
be used to reduce the dimensionality of datasets. In the
space spanned by the masked volumewise PCs, the signal is
described mostly by lower-order masked volumewise PCs
whereas noise is described by higher-order masked vol-
umewise PCs. It is therefore useful to be able to separate
data spanned by the lower-order masked volumewise PCs
from data spanned by the higher-order masked volumewise
PCs in the original frame space.

Because PCA and masked volumewise PCA with non-
masked data changes merely the basis of the prenormalized
data, no quantitative information is lost during the masked
volumewise PCA and the full original dataset or parts of it
can be reconstructed from the masked volumewise PCs.

A PET dataset with p frames is defined as

X =[X1, Xz, .., %]

Prenormalizing this matrix yields the matrix Z. To
remove all but the k lowest-order PCs from Z, Z is
projected onto the corresponding eigenvectors retrieved
from PCA of Z. Instead of representing this signal as p
frames, one can represent it by k PCs, by projecting the
data onto the eigenvectors retrieved from PCA of the data.
The PCs are calculated from

Y =EZ= [YI>YZ>'-'7yk]T7

where Z is the prenormalized matrix X and E is the
eigenvector matrix retrieved from the PCA. To project a
selected number of PCs back to frame space, all unwanted
PCs in Y are set to zero, creating the new matrix Y. The
prenormalized signal in frame space is then calculated as

Z=E 'Y =E"Y.

The inverse prenormalization is then performed on Z,
creating the modified input matrix X. A flow chart of the
procedure is shown in Figure 3.
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FIGURE 2. Schematic of higher-order PC noise prenormali-
zation.
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FIGURE 3. Removal of masked volumewise (MVW) PCs
from X.

Removal of
MVW-PCs

Clinical Study to Trim a Higher-Order PC Noise
Prenormalization Parameter

To determine the optimal number of masked volumewise
PCs used for performing the higher-order PC noise pre-
normalization, the sample SDs in different reconstructions
were calculated. These estimates were then compared with
the sample SD of the background in a dataset reconstructed
with FBP.

The mean squared error (MSE) was used to retrieve a
quantitative measure of the differences between the esti-
mates from the reconstructions and the estimate from the
background. Because PCA picks the same eigenvectors no
matter the scale of the input data, a multiplication of the
prenormalization coefficients by a scalar will not affect the
PCA results. Therefore, each estimate from the reconstruc-
tions was multiplied by the scalar value that minimized the
MSE to the estimate from the background, to get a fair
comparison of MSEs. These comparisons were made
between 2 clinical datasets reconstructed with FBP, where
the first dataset was retrieved from a full-body study
performed with '®F-FDG and the second was a brain study
performed with ''C-Pittsburgh compound B.

Masked Volumewise PCA

PCA is a method that explains the variance—covariance
structure through linear combinations of the original varia-
bles (7). Each linear combination, known as PC, is picked
in such a way that it maximizes the variance, which is the
same as minimizing the MSE, under the constraint that the
norm of its weight vector equals 1 and that the new PC is
uncorrelated to any previous PCs (8). The weight vectors
are the eigenvectors of the covariance matrix of the multi-
variate data and are usually calculated by singular value
decomposition.

Because it is common that only a limited part of a dataset
contains the object, the dataset can be masked to include
only data within this VOI. This procedure reduces memory
use and computation time and has an advantage in that the
directions of the eigenvectors are dependent only on data
inside the VOI and are not influenced by noise or other
disturbing signals in the background. Masked volumewise
PCA is performed in several steps: A mask representing the
scanned object is created using transmission images either
from PET or, if a PET/CT study is performed, from CT. The
mask is used to extract the object from the background and
can also be used to perform background noise prenormal-
ization. PCA is performed on the data within the VOI rep-
resenting the object. PCs created with masked volumewise
PCA are referred to as masked volumewise PCs (2). To be
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FIGURE 4. lllustration of masked volu- Mask

mewise PCA procedure.
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viewed, the masked volumewise PCs are placed in a matrix
of the same size as the input data, creating the unmasked
masked volumewise PCs seen in Figure 4.

Clinical Study for Evaluating Higher-Order PC
Noise Prenormalization

To evaluate the higher-order PC noise prenormalization,
we used a clinical dynamic PET dataset from a previous
study (3). This dataset contained 14 frames and was
acquired from a full-body study performed with !'C-meto-
midate. Reconstructed datasets generated using both FBP
and OSEM were available.

Two VOIs were selected in the OSEM reconstructed data:
one over an adrenal gland and another over the stomach.

Both the FBP and the OSEM datasets were prenormal-
ized with the removal-of-mean, standardized-variable, back-
ground, and higher-order PC prenormalizations, creating 8
new datasets. Masked volumewise PCA was applied to all

datasets, and reconstructions were performed with masked
volumewise PC 1; with masked volumewise PC 1 and
masked volumewise PC 2; with masked volumewise PC 1,
masked volumewise PC 2, and masked volumewise PC 3;
and so on until all but the highest-order masked volume-
wise PC (masked volumewise PC 14) were used in a
reconstruction. In this way, 104 datasets (8 x 13 = 104)
were created.

Usually, when a VOI is drawn within an organ, the
volume is not completely homogeneous. There are varia-
tions in scale between the time—activity curves, yet it can
often be assumed that they all share a similar kinetic behav-
ior. Since the fact that time—activity curves differ only in
scale can be described by a single component, masked
volumewise PCA was performed on the VOI to find the
masked volumewise PC that optimally represented the
time—activity curve within the VOI in a mean square sense.
This optimal component was reconstructed and referred to
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as X. To measure the deviation between a dimension-
reduced dataset X and the optimal component %, the MSE
between the samples was calculated as

LS N i) — #lim)s

MSEX =
p'NVOI n=1i=1

where p is the number of frames and Ny is the number of
samples within the VOL

RESULTS

Comparison of Data Reconstructed with FBP
and OSEM

The arithmetic mean and sample SD for the 3 ROIs over
time (different frames) are shown in Figure 5. The arith-
metic mean over all slices for each given frame was calcu-
lated to get more stable results.

OSEM had a slightly higher arithmetic mean in the high-
and low-activity ROIs than did FBP, whereas the arithmetic
mean in the no-activity ROI was far lower for OSEM than
for FBP. Compared with FBP, OSEM also showed a highly
decreased sample SD in the low- and no-activity ROIs.
Apart from the differences between FBP and OSEM, one
can notice that the arithmetic mean is nearly constant,
whereas the sample SD shows a positive trend over time.

The corresponding measurements for different axial
offsets (different slices) are shown in Figure 6. In this case,
the arithmetic means over all frames for each given slice
were calculated to get more stable results.

Other general observations were that the outer slices,
close to the opening of the gantry, had lower arithmetic
means than the slices near the center because of detection
of counts outside the field of view. The curve representing
the sample SD had a characteristic shape with high values
near the edges and 2 peaks at +4.65 mm (slices 25 and 37).
The curves for the arithmetic mean in the no-activity ROI
had a similar shape. One can also notice that odd slices tend
to have a slightly higher sample SD than the neighboring
even slices, resulting in a jagged appearance.

Clinical Study to Trim a Higher-Order PC Noise
Prenormalization Parameter

A comparison between the sample SD of the background
and the scaled sample SD of 4 different reconstructions
from higher-order PCs is shown in Figure 7.

The deviation from the SD of the reconstructions com-
pared with the background noise was measured by calcu-
lation of the MSE for up to 13 masked volumewise PCs.
The results are shown in Figure 8. Reconstruction without
the first or the first 2 masked volumewise PCs in the higher-
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FIGURE 7. Scaled plots of SD used by
higher-order PC, from full-body study
using '8F-FDG (A) and brain study using
11C-Pittsburgh compound B (B). Higher-
order PC 1 (O), higher-order PC 2 (&),
and higher-order PC 3 (A) are compared
with background noise (O). Index of higher-

Scaled standard deviation (Bg/cm?)

order PC corresponds to number of
removed masked volumewise PCs in pre-
normalization step.
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FIGURE 8. MSE between SD of back-
ground noise and scaled SD used by
higher-order PC noise prenormalization:
result from full-body study (A) and result
from brain study (B). Logarithmic scale is
used.

12345678 910111213

12345678 910111213
Removed MVW-PCs

order PC noise prenormalization generated results closest to
the results retrieved from the background noise prenormal-
ization (for these specific datasets).

Clinical Study for Evaluating Higher-Order PC
Noise Prenormalization

MSE;, the MSE in comparison with the optimal compo-
nent %, for various reconstructions is shown in Figure 9.
These bar graphs illustrate that the gland was optimally
reconstructed using the first 3 masked volumewise PCs
when higher-order PC noise prenormalization was applied,
for both FBP and OSEM. The stomach was optimally re-
constructed using the first 5 masked volumewise PCs with
background noise prenormalization for FBP and using the
first 6 masked volumewise PCs with standardized variable
prenormalization for OSEM.

The differences between the prenormalizations are sig-
nificant in the FBP data. The background noise prenor-
malization did not perform well on the dataset reconstructed
with OSEM in the stomach VOI. Higher-order PC noise
prenormalization performed fairly well on both the dataset
reconstructed with FBP and the dataset reconstructed with
OSEM.

The result from application of masked volumewise PCA
with higher-order PC noise prenormalization on datasets re-
constructed with FBP and OSEM is illustrated in Figure 10.

An example of a slice in a dimension-reduced dataset is
shown in Figure 11. This dataset was reconstructed with
OSEM and underwent higher-order PC prenormalization. It
was then dimension-reduced to the first 5 masked volume-
wise PCs. The dimension-reduced dataset had a more
homogeneous appearance, and the flickering of pixels that
appears when several frames are viewed in a sequence was
reduced.

The MSE; graphs in Figure 9 show that the removal-of-
mean and the standardized-variable prenormalizations should
be avoided when data reconstructed with FBP are analyzed.

DISCUSSION

The aim of this study was to reduce noise in dynamic
PET datasets, reconstructed with either FBP or OSEM,
using masked volumewise PCA.

The phantom study showed that, compared with FBP,
OSEM had a higher expectation value in high-activity re-
gions and a lower expectation value in regions where there
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FIGURE 9. MSE in different reconstruc-
tions for different prenormalizations, com-
pared with optimal signal x. FBP is used in
A and B whereas OSEM is used in C and
D. Measurements are from adrenal gland
VOI (A and C) and stomach VOI (B and D).
Index of higher-order PC corresponds to
number of removed masked volumewise
PCs in prenormalization step. Logarithmic
scale is used.
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was no activity. In high-activity regions, the SD of OSEM
and FBP data was close to identical, whereas OSEM had an
SD close to zero in regions without any activity. The trend
toward an increased sample SD over time is due to the
decay correction, which aims at keeping the expectation
value constant at the expense of a higher SD. The 2 peaks
that are visible in Figure 6 are probably due to the fact that
the eXplore VISTA scanner has 2 separate detector rings.
The only parameter that has to be decided when higher-
order PC prenormalization is performed is the number of
lower-order masked volumewise PCs to remove to get a
good estimate of the SD of the noise. Removal of the first,
or the first 2, masked volumewise PCs gave scale factors
close to the SD of the background noise in an ''C-Pitts-
burgh compound B and '8F-FDG study. If a large part of the
signal is spanned by more than 2 masked volumewise PCs,
it may be necessary to remove more masked volumewise
PCs. Too much signal in the reconstruction will result in
highly overestimated scale factors for the slices in which
the signal is present, resulting in slices with low amplitude.
It is expected that, when used on OSEM data, back-
ground noise prenormalization would perform poorly
because it is dependent on noise in the background and
will not function at all if the background values are zero.
Nevertheless, background noise prenormalization per-
formed well in the adrenal gland region but poorly in the
stomach region for OSEM data. Higher-order PC prenor-
malization showed great potential because it performed well
on data reconstructed with both FBP and OSEM. None of

A B

FIGURE 10. Slices from first 3 masked
volumewise PCs from datasets recon-
structed with FBP (A-C) and OSEM
(D-F). Most adrenal gland and general
tracer behavior is described by masked
volumewise PC 1 (A and D). Masked vol-
umewise PC 2 (B and E) describes early
tracer accumulation in kidneys, whereas
tracer concentration in stomach can be
separated with masked volumewise PC
3 (C and F).

the prenormalizations was superior to all the others on all
datasets.

As Figure 9 illustrates, the MSE tends to decrease for
every added masked volumewise PC up to a certain point,
after which the error starts to increase again. The reason is
that lower-order masked volumewise PCs describe mostly
the signal whereas higher-order masked volumewise PCs
describe noise rather than signal. The point after which the
error starts to increase depends not only on the chosen
prenormalization but also, even more, on the structure
where the error is measured.

As seen in Figure 11, masked volumewise PCs are useful
for drawing ROIs. Even though dimension reduction of
input data in this study was used primarily as a tool to
compare different prenormalizations, the method can be
used on clinical data to reduce noise, as shown in Figure
11. One must be careful if small regions with small devia-
tions in tracer behavior are of interest, or if the patient is
moving during the scan, because this information tends to
end up in higher-order masked volumewise PCs and be
removed. Even though the image in Figure 11B looks
low-pass—filtered, dimension reduction with PCA simply
preserves the time—activity curves that are correlated and
hence is independent of the spatial or temporal frequency of
the signal.

Both higher-order PC and background noise prenormal-
ization scales the dataset slice by slice. This procedure
yields good results when there are clear differences in noise
variance between different slices. However, one can assume

FIGURE 11. One slice in original (A) and
dimension-reduced (B) dataset showing
adrenal gland (arrows).

Concentration of activity ( Bq/cme) N
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that such is not the case when 3-dimensional reconstruction
is used. Nor is this procedure as efficient for OSEM as for
FBP (as shown in this study), because noise variance in
datasets reconstructed with OSEM varies greatly within
each slice depending on the signal. On the basis of this
information, future studies aimed at increasing performance
further by estimating the SD of each voxel and prenor-
malizing the dataset before PCA would be of interest.

CONCLUSION

Masked volumewise PCA of dynamic PET datasets
reconstructed with FBP is much more dependant on an
appropriate prenormalization than is analysis of data
reconstructed with OSEM. This study showed that higher-
order PC prenormalization can be used on dynamic datasets
reconstructed with both methods. Higher-order PC pre-
normalization and dimension reduction with masked vol-
umewise PCA, followed by reconstruction to the original
frame space, shows promising results that can be applied in
clinical trials.
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