Introduction to PET Instrumentation

TO THE EDITOR: There is an error in your article "Introduction to PET Instrumentation" (1). I am not sure if it is a typographical error on your part-or if Dr. Turkington presented you with some erroneous text. On page 5 under the Heading "Projections," the article says, "For a ring with n detectors, there are n-squared/2 ways to pair up the detectors . . ." This is incorrect. I believe it should say, "there are (n -squared minus n) $/ 2$ detectors." If the article is correct, I would appreciate a description of how this can be. Thanks.

REFERENCES

1. Turkington, TG. Introduction to PET instrumentation. JNMT.2001;29:4-11.

REPLY: Thanks for your message. You are correct in that $\mathrm{n}^{2} / 2$ is not the exact formula. The exact formula is $\left(\mathrm{n}^{2}-\mathrm{n}\right) / 2$, as you proposed.

For the large numbers of detectors typical in current PET detector rings, $\mathrm{n}^{2} / 2$ (what I gave) is essentially the same as $\mathrm{n}(\mathrm{n}-$ 1) $/ 2$ (the exact formula). For example, $600 * 600 / 2=180000$ and $600 * 599 / 2=179700$. I used the simpler formula because it is a very good approximation and because I think it makes the point more clearly that the number of pairs goes very closely with the square of the number of detectors. I probably should have said "approximately n n $/ 2$."

Sandra Kalman, BS, CNMT
 Edinburg, TX

Timothy Turkington, PhD
Duke University Medical Center
Durham, NC

The Technologist Section of the Society of Nuclear
Medicine

