Validation of a Column Method for Technetium-99m Exametazime Quality Control

George Pandos, Stan Penglis and Chris Tsopelas

Queen Elizabeth Hospital Nuclear Medicine Department, Woodville South and Royal Adelaide Hospital, Nuclear Medicine Department, RAH Radiopharmacy, Adelaide, South Australia

Objective: The purpose of this study was to investigate if an octadecyl (18C) minicolumn could be applied successfully for quality control of 99mTc exametazime (HMPAO).

Methods: The 18C column system using saline eluent was validated against the Whatman 17 method in calculating the percent radiochemical purity of 99mTc-HMPAO. The behavior of 99mTc-pertechnetate (99mTcO₄⁻) and hydrolyzed-reduced 99mTc (99mTcO₂) on the column was examined, as well as method reproducibility.

Results: The column method is reproducible and yields results that are highly comparable to the Whatman 17 method. Technetium-99m-pertechnetate is associated with the eluent, and some 99mTcO₂ is retained by the column but this level is insignificant to the final patient dose.

Conclusion: The minicolumn system is safe, simple, rapid and reliable for the quality control analysis of routine 99mTc-HMPAO preparations.

Key Words: carbon-18 column; technetium-99m-HMPAO; radiopharmaceutical quality control methods; radiochemical purity analysis methods

The manufacturer’s method for assessing the radiochemical purity (RCP) of 99mTc-HMPAO requires the use of 3 solvent types on 2 different stationary phases, and is time consuming (15–20 min) (1). Since the useful life of reconstituted 99mTc-HMPAO preparations is only 30 min, rapid quality control (QC) procedures are needed to effectively evaluate % RCP before patient injection. A single-strip, miniaturized chromatography system to quantitate the lipophilic component in 99mTc-HMPAO was previously validated against the manufacturer’s method (2). This still popular chromatography system consists of Whatman 17 paper (W17) strips using ethyl acetate as the developing solvent, and it successfully separates 99mTc-HMPAO at the solvent front from hydrolyzed-reduced 99mTc (99mTcO₃), 99mTcO₄⁻ or secondary 99mTc-HMPAO complex at the origin. QC results are quickly obtained by this procedure (5 min). The strip must be placed in the solvent immediately after spotting, however, since any delay can underestimate the % RCP of 99mTc-HMPAO due to oxidation of the primary complex. With the recent availability of 18C minicolumns (Amprep; Amersham UK, Buckinghamshire, England) for sample preparation in Australia, we decided to investigate the application of such products in the QC analysis of 99mTc-HMPAO. The W17 paper method was used in our study to validate the Amprep column (AC) system.

MATERIALS AND METHODS

Sodium 99mTc-pertechnetate (99mTcO₄⁻) was obtained from the daily milking of a ⁹⁹Mo/⁹⁹mTc generator and used to prepare 99mTc-HMPAO per the manufacturer’s instructions. The percent labeling efficiencies were determined by column and paper methods simultaneously on 1 kit within 30 min after reconstitution, then at 1, 1.5, 2, 3, 4 h for ⁹⁹mTc-HMPAO and 20, 60 and 120 min for ⁹⁹mTcO₂. All QC analyses were performed 3 times or as specified, and a dose calibrator was used for counting all samples. Reproducibility of the column and paper methods was tested on ⁹⁹mTc-HMPAO kits on different days within 30 min after reconstitution. Rf values were determined based on the definition: distanced migrated/distanced migrated by the solvent.

Determining Percent Radiochemical Purity of Technetium-99m-HMPAO

Whatman 17 Method. A previously reported procedure (2) was used where a W17 paper strip (1 × 8 cm) was developed in ethyl acetate solvent. The solvent front contained 99mTc-HMPAO (cut line R₂, 0.25).

Amprep Column Method. The AC (RPN.1900) was conditioned by eluting with saline (2 mL), then air (2 mL). Technetium-99m-HMPAO (1–3 drops) was added by syringe bearing a needle (22 G × 2 in.) directly onto the sorbent bed. The column was eluted with saline (2 mL), then air (2 mL) into a collection vial. The eluate vial and column each were counted separately. Percent RCP of ⁹⁹mTc-HMPAO was expressed as percent column counts in the total counts of eluate plus column.
Percent Hydrolyzed-Reduced Technetium-99m in Technetium-99m-HMPAO Kits (3)

The Whatman 1 paper strip (W1; 1 × 6 cm) was spotted with 99mTc-HMPAO, developed using freshly prepared water for injection: acetonitrile [50:50] solvent, then cut (R$_f$ 0.50) to isolate the origin and solvent front pieces for counting. Technetium-99m-HMPAO, the secondary 99mTc-complex and 99mTcO$_4^-$ migrated with an R$_f$ 0.8–1.0 while 99mTcO$_2$ remained at origin. The percent 99mTcO$_2$ was calculated as percent origin counts in the total counts of both pieces.

Preparing Hydrolyzed-Reduced Technetium-99m

A modified procedure (4) was used to prepare 99mTcO$_2$ dispersions. A quantity of 500 MBq/0.5 mL 99mTcO$_4^-$ was added to a solution of stannous chloride (SnCl$_2$; 545.4 µg) in hydrochloric acid (pH 5.0; 1.0 mL) in a nitrogen-filled vial and then diluted [1:306] (≈ 1.78 µg SnCl$_2$) with water for injection to make Kit A. Kit A was diluted further [1:9.4] with water for injection to make Kit B. Kit B contained a SnCl$_2$ level (0.19 µg) which simulated the mass of stannous chloride required to produce 2.5% 99mTcO$_2$. The % RCP of 99mTcO$_2$ in Kit A was determined using instant thin-layer chromatography paper impregnated with silica gel (ITLC-SG; 1 × 16 cm) and saline (0.9%) as the developing solvent. A cut line at R$_f$ 0.1 (1 cm) separated the origin and 9 other pieces (1 cm), and percent 99mTcO$_2$ was calculated as percent origin counts in the total counts of all pieces.

Behavior of Technetium-99m-Pertechnetate and Hydrolyzed-Reduced Technetium-99m on the Carbon-18 Column

In separate experiments, 99mTcO$_4^-$ (5 MBq/mL; 1–3 drops), 99mTcO$_2$ (1–3 drops) in Kit A and Kit B, were each eluted with saline (2 mL) down the preconditioned column in a procedure, as outlined with 99mTc-HMPAO above.

RESULTS

Determining Percent Radiochemical Purity of Technetium-99m-HMPAO

Table 1 highlights the change in % RCP of 99mTc-HMPAO over time according to both methods, as well as the reproducibility between different kits (n = 30) over time. Percent RCP calculations were obtained by the AC method in only 3 min, and were higher by 0.7%–3.0% than the W17 method values. Each column was reused at \pm 2 d after QC analysis to allow for 99mTc decay. Use of 1 column consecutively on 12 occasions resulted in 2%–3% reduction in % RCP of 99mTc-HMPAO.

The % RCP of 99mTc-HMPAO values obtained by both methods (n = 45) are depicted as a correlation graph in Figure 1. Note that the regression line is slightly staggered up the y axis.

Percent Hydrolyzed-Reduced Technetium-99m in Technetium-99m-HMPAO Kits

Hydrolyzed-reduced 99mTc was found in 99mTc-HMPAO kits as a minor impurity (Table 2), and observed to vary insignificantly with time.

Behavior of Technetium-99m-Pertechnetate and Hydrolyzed-Reduced Technetium-99m on the Carbon-18 Column

Technetium-99m-pertechnetate was not retained by the column matrix, but appeared in the eluent exclusively (99.9% ± 0.0%). Hydrolyzed-reduced technetium-99m remained at the origin of the ITLC-SG strip quantitatively (96.8% ± 1.3%). This species was better retained by the column with Kit B (Table 3).

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>% RCP 99mTc-HMPAO</th>
</tr>
</thead>
<tbody>
<tr>
<td>W17 method</td>
<td>AC method</td>
</tr>
<tr>
<td><0.5</td>
<td>91.1 ± 2.7</td>
</tr>
<tr>
<td>1</td>
<td>78.0 ± 1.5</td>
</tr>
<tr>
<td>1.5</td>
<td>74.1 ± 0.5</td>
</tr>
<tr>
<td>2</td>
<td>61.7 ± 0.2</td>
</tr>
<tr>
<td>3</td>
<td>56.0 ± 1.9</td>
</tr>
<tr>
<td>4</td>
<td>48.0 ± 0.8</td>
</tr>
</tbody>
</table>

| Table 2 Percent Hydrolyzed-Reduced Technetium-99m in Technetium-99m-HMPAO Kits Over Time |
|------------------|------------------|
| Time (min) | % 99mTcO$_2$ |
|20 | 2.1 ± 0.5 |
|60 | 2.5 ± 0.5 |
|120 | 2.3 ± 0.4 |

VOLUME 27, NUMBER 4, DECEMBER 1999

FIGURE 1. Correlation graph of percent radiochemical purity of technetium-99m-HMPAO versus 2 quality control methods.
DISCUSSION

Use of an aqueous mobile phase in the AC procedure was a major advantage over the W17 method because it eliminates the need for hazardous organic solvents. Reproducibility of both QC methods was very good, giving percent radiochemical purity of 99mTc-HMPAO as 91.1% ± 2.7% (± 2.1% ± 0.5% for 99mTcO$_2$) by the Whatman methods and 92.6% ± 3.2% by the AC method. The correlation coefficient shows that the AC method can determine % RCP of 99mTc-HMPAO equally effectively as the W17 method (Fig. 1).

Technetium-99m-pertechnetate was not retained by the column and thus did not influence the final % RCP of 99mTc-HMPAO result. However, 99mTcO$_2$ was retained by the cartridge to the extent of 49.6% ± 1.0% with Kit A and 88.8% ± 0.2% with Kit B. These results show that the 18C column binds a higher proportion of 99mTcO$_2$ impurity when it is present at lower levels, as normally found in 99mTc-HMPAO kits (2.1%). Thus, for a 99mTc-HMPAO kit containing 2.1% 99mTcO$_2$, the cartridge will remove 1.9% by column adsorption and allow 0.2% to pass into the eluent.

This 99mTcO$_2$ level of column adsorption is in agreement with the range of difference of % RCP values (0.7%–3.0%) for both methods (Table 1). The staggered regression line in Figure 1 can be explained by the low level of column bound 99mTcO$_2$. Thus, 99mTcO$_2$ accounts for the higher % RCP values by the AC method (Table 1), and fortunately exists in 99mTc-HMPAO kits as a minor impurity (Table 2). Furthermore, we found this amount varies only slightly with time, as previously observed (5).

Although the % RCP of 99mTc-HMPAO is slightly overestimated by the AC method, the impurity level is insignificant because all values within 30 min greatly exceed the manufacturer’s permissible % RCP limit (80%) for patient injection.

The secondary 99mTc-HMPAO complex is hydrophilic (6), remaining at the origin with W17 method and, in comparison to the charged 99mTc-pertechnetate ion, it was not expected to be retained by the 18C column after saline elution. The secondary 99mTc-HMPAO complex is a degradation product of 99mTc-HMPAO, an impurity that significantly increases with time beyond 30 min. From Table 1, all the % RCP of 99mTc-HMPAO values decrease at the same rate with time, suggestive of poor retention of the secondary complex by the column.

CONCLUSION

Percent RCP results for different 99mTc-HMPAO kits were highly comparable between the W17 method and the AC analysis system. The AC system employs an inexpensive, reusable 18C column in conjunction with a safe and readily available mobile phase. This method was found to be both simple and rapid for the QC analysis of routine 99mTc-HMPAO preparations.

REFERENCES