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Left ventricular diastolic function can be evaluated noninva
sively from gated blood-pool studies. Two of the more useful 
indices of diastolic function are peak filling rate and time-to
peak filling rate. We have compared two analytic methods 
(third order polynomial and Fourier series) for determining 
these parameters. We evaluated both of these methods on a set 
of 24 subjects and a set of simulated curves. Although there 
was close agreement between the results obtained with the two 
methods, the polynomial fit requires operator selection of 
boundary points which influence the measured parameters and 
also requires an independent determination of the time-to
end-systole. The Fourier series method does not require oper
ator intervention and determines all relevant quantities auto
matically from the single fitting procedure. Thus, we conclude 
that the Fourier series fit is less subject to methodologic bias 
and is, therefore, the preferred method for the evaluation of 
left ventricular diastolic function. 

In recent years, measurement ofleft ventricular (LV) diastolic 
function has become an important investigative procedure 
due to the clinical significance of normal or abnormal rates 
of ventricular filling (1-8). In certain patients, the use of 
diastolic function parameters has been reported to be a more 
sensitive test for determining the presence or nature of cardiac 
disease than parameters of systolic function ( 1, 9 ). Pathologic 
conditions such as coronary artery disease, myocardial infarc
tion, constrictive pericarditis, cardiomyopathy, mitral steno
sis, and hypoxia will produce impaired ventricular compliance 
due to incomplete or abnormal muscular relaxation (10-18). 
With radionuclide ventriculography, it is now possible to 
study the time-course of LV filling noninvasively and, 
thereby, characterize one aspect of LV diastolic function (2, 
19). Thus, analysis of left ventricular time-activity curves 
(T ACs) obtained with multigated imaging of the labeled red 
blood cell pool in the left ventricle can be a useful tool in the 
evaluation of patients who may have certain forms of cardiac 
diseases. 

The two methods used for the quantitative analysis of the 
T AC have been the third order polynomial fit and the Fourier 
series fit (1, 20, 2 1). The purpose of this study was to compare 
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these two methods and to delineate their advantages and 
disadvantages. Two of the more useful indices of diastolic 
function are the peak-filling-rate (PFR) during the rapid filling 
phase of diastole and the time-to-peak-filling-rate (TPFR) 
(22). These two indices were used as parameters for the 
comparison of the third order polynomial fit and the Fourier 
series fit. The first method finds the PFR and TPFR from a 
third order polynomial fit which is applied only to the rapid 
filling phase of the LV TAC (1) (Fig. 1 ). In the second method, 
the entire LV T AC is fitted by a Fourier series which is then 
used to calculate the PFR and TPFR (20) (Fig. 2). 

MATERIALS AND METHODS 

Patient Studies 

Scintigraphic studies were performed on two groups of 
patients. The first group consisted of 12 normal male volun
teers, aged 23 to 35. They had no evidence of cardiovascular 
or pulmonary disease by physical examination. In each pa
tient, the resting radionuclide ejection fraction (L VEF) was 
normal. The second group consisted of 12 patients, eight 
males and four females ranging in age from 58 to 76 with 
clinical evidence of cardiac disease. 

Data Acquisition 

The patients were studied with a small field of view scintil
lation camera* using a collar shield that limited the field of 
view to the left ventricle only. The camera was positioned in 
a left anterior oblique angulation, which was adjusted to 
achieve the best septal view possible. Twenty minutes after 
injection of 5.1 mg. stannous pyrophosphate,+ 30 mCi of 
[
99mTc]pertechnetate was injected intravenously. The chang

ing pattern of radioactivity in the ventricle was recorded for 
a total of 10 million counts with serial mode acquisition using 
a gating device.* 

Data Analysis 

Scintigraphic data from the patients were reformatted using 
a technique described by Bonow eta!. (1). Temporal resolu
tion of 10-20 msec per frame was used to produce 40-50 
frames per cardiac cycle (23, 24). Beat-to-beat uniformity was 
achieved by accepting cardiac cycles whose duration was 
within 15% of the dominant cycle length. This prevents 
distortion of the T AC by extrasystoles, post-extrasystolic 
cycles, and wide variations in sinus rhythm. 
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FIG. 1. Third order polynomial fit to the rapid filling phase of the LV 
time-activity curve used to find the values for the PFR and TPFR. 

Stimulation Studies 

The accuracy of both methods was evaluated from a set of 
stimulated LV T ACs. These curves were generated analyti
cally so that the PFR and TPFR were exactly known. Five 
sets of curves were generated with the PFR varying from 2.5 
to 4.5 EDV /sec. Each set consisted of eight curves which were 
scaled to a maximum of 4,000 counts. Random noise with a 
Poisson distribution was added to each of the curves to 
simulate counting statistics. Each set was analyzed with both 
the third order polynomial (1) and the Fourier series fit (24) 
and the results were compared against the analytic values. 

RESULTS 

For each patient, the diastolic function values calculated by 
the two analytic methods were in close agreement for each 
parameter. Results are shown in Figure 3, where the y-axis 
denotes the parameter calculated with the third order poly
nomial fit and x-axis shows the parameters derived from the 
Fourier series fit. For the PFR parameter, shown at the top, 
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FIG. 2. Entire LV time-activity curve fitted by a Fourier series which 
is used to calculate the PFR and TPFR. 
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FIG. 3. PFR, TPFR, and EF determinations derived with each of the 
two methods (third order polynomial and Fourier series) independently 
correlated utilizing linear regression analysis. 

the slope of the correlation was 0.96, the intercept was 0.02, 
and the correlation coefficient was r = 0.972. For TPFR 
values, shown in the middle, the slope of correlation between 
the two techniques was 1.01, the intercept was -5.1, and the 
correlation coefficient was r = 0.94. Comparing the EF values 
derived from the Fourier fit and the EF values derived from 
routine analysis of the T AC, we found a slope of correlation 
of 1.0 I, an intercept of 0.6, and a correlation coefficient of r 
= 0.995. With the third order polynomial technique, values 
for the PFR, TPFR, and EF ranged from 1.44 to 4.55 EDV / 
sec, 127 to 237 msec, and 26% to 81%, respectively. With the 
Fourier series technique, values for the PFR, TPFR, and EF 
ranged from 1.5 to 4.5 EDV /sec, 125 to 250 msec, and 27% 
to 80%, respectively. 

Correlations were determined by comparing the third order 
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polynomial and Fourier series fit values to the simulated curve 
values. With the third order polynomial fit, r values of 0.99 
were obtained for both PFR and TPFR. With the Fourier 
series fit, r values of 0.99 and 0.98 were obtained for PFR 
and TPFR, respectively. Interobserver variation was evaluated 
for each method by comparing the results of each patient's 
data done by four different operators. When different opera
tors used the third order polynomial fit method to derive 
filling parameters from a singleT AC, PFR values ranged from 
2.70 EDV/sec to 3.90 EDV/sec (Fig. 4). The interobserver 
variation in the PFR values was as little as 0.04 and as high 
as 1.35. This wide range of variation was related to the number 
of frames incorporated and the selection of boundary points 
used by the operator (see Figure 4, which shows an example 
of different values for PFR when a different operator uses the 
third order polynomial fit). The Fourier series-fit values did 
not exhibit any variation since there is no operator interven
tion for the determination of boundary points and the values 
were determined with a single fitting procedure. 

DISCUSSION 

Both the third order polynomial method and the Fourier 
series method provide a readily available noninvasive means 
of evaluating diastolic function parameters (9). While each 
method was accurate when checked against a gold standard 
provided by simulated curves, we conclude that the Fourier 
series fit is the preferred method. The third order polynomial 
fit requires the selection of boundary points and also requires 
an independent determination of the time-to-end-systole. In 
addition, the measured parameters are sensitive to the selec
tion of boundary points demonstrated by our data where 
interobserver variation in the PFR values was as little as 0.04 
and as high as 1.35 (Fig. 4). Furthermore, the third order 
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FIG. 4. Variation in PFR values related to 
the number of frames incorporated and the 
selection of boundary points when the third 
order polynomial fit method is used. 

polynomial method requires a large amount of processing 
time because 40-55 frames per cardiac cycle are needed to 
analyze the diastolic values. The Fourier series method does 
not require operator intervention and determines all relevant 
values from the single fitting procedure. This type of fitting 
produces a systematically reproducible method and requires 
less computer time. These conclusions are consistent with 
those of Zatta et a!. ( 9 ), who performed a similar study. Based 
on the results of our comparison study, we have chosen to 
use the Fourier series fit for a more reproducible and time
efficient method to determine LV diastolic function parame
ters. 

NOTES 

* LEM, Siemens, Schaumburg, IL 
t TechneScan PUP, Mallinckrodt, Inc., St. Louis, MO 
* Lifepak 6, Physio-Control, Redmond, W A 
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