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Image Fusion in Medicine: An Overview Using 
The CT -SPECT Model 

With the widespread application of computer technology 
in medical imaging, digital images are now routinely produced 
in many different modalities. Specifically, detailed cross-sec­
tional anatomic images are now obtained with either x-ray 
computed tomography (CT) or magnetic resonance imaging 
(MRI), while cross-sectional functional images are produced 
by single-photon emission tomography (SPECT) or positron 
emission tomography (PET). Subsequent comparison of these 
images usually is accomplished by visual analysis, with the 
observer mentally integrating the data prior to rendering an 
interpretation (1,2). Although this approach is adequate in 
most clinical situations, a more accurate comparison can be 
performed by directly combining the images with the aid of a 
computer in order to extract and manipulate the desired 
information. This latter technique, image fusion, has the 
additional advantages of ( 1) correcting for variability in ori­
entation, position, and dimension; (2) allowing precise ana­
tomic-physiologic correlation; and (3) permitting regional 
quantitation (3). 

The purpose of this paper is to serve as an introduction to 
image fusion in medicine, using the CT-SPECT model. The 
topics covered include: (I) a brief description of the CT­
SPECT model; (2) a discussion of the problems and assump­
tions of image matching; (3) a review of clinical approaches 
to matching; and (4) several potential applications. For a 
more in-depth explanation of pattern recognition and match­
ing, including detailed mathematical descriptions of coordi­
nate transformations and matching algorithms, the interested 
reader is referred to the physics, engineering, and computer 
graphics literature ( 4-11 ). 

Cf-SPECf MODEL 
A detailed discussion of an image fusion system necessarily 

entails a thorough description of its individual components 
(12). For the SPECT-CT model, this would include: (l) the 
CT scanner, (2) the SPECT scanner; (3) the object to be 
imaged; (4) the relationship between the object and the scan­
ners; (5) the viewing environment; and (6) the interpreter. 
Such a complete discussion is clearly beyond the scope of this 
paper, and may be found in the literature. The physical 
principles of x-ray CT and SPECT have been discussed thor-
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oughly in several texts (13,14) and journal articles (15-19}, 
while Brooks and Di Chiro (20) have described several com­
mon reconstruction algorithms. An excellent review article of 
the science of visual perception and image display terminals 
(21) recently has been published, and other authors have 
summarized the potential applications of automated image 
analysis (22) and artificial intelligence (23). The following 
discussion will, therefore, be limited to a few salient points 
regarding CT and SPECT resolution and lesion detection. 

Three important, interrelated criteria of CT performance 
are uniformity, resolution, and precision. Uniformity refers 
to the accuracy of the equipment response in one area com­
pared with another area. Nonuniformity may be due to beam 
hardening, detector flaws, poor geometry, and poor mathe­
matical reconstruction (13). Resolution for high contrast 
objects is dependent upon pixel size, which is -1 mm for a 
CT device with a whole-body scan circle of 50 em and a 512 
x 512 matrix. Typically the high contrast resolving power of 
a CT device should be 1.5 times that of the pixel width (17). 
Unfortunately, increasing the matrix size decreases the statis­
tical precision of the data within each pixel, according to the 
relationship: (inaccuracy}2

- (resolution}3 (16). Although CT 
scanners are very sensitive and can detect attenuation differ­
ences as low as 0.5% (15}, low contrast resolution or visibility 
is primarily dependent upon precision and object size (13). 
Decreased precision (quantum mottle or picture grain) can 
be improved by either decreasing the matrix size or increasing 
the patient radiation dosage according to the relationship: 
Picture grain - 1/v'dosage (16). Ultimately, whether a sus­
pected lesion will be detected by CT scanning is dependent 
upon several factors including: the attenuation coefficient of 
the lesion compared to the background; the size and shape of 
the lesion; the homogeneity of the lesion and the background; 
and the presence of noise artifacts in the picture (15 ). 

Similar performance criteria also are applicable to SPECT 
scanning with the additional constraint of poor counting 
statistics due to geometric and dosimetric considerations and 
detector inefficiency. A conventional gamma camera can 
detect only -0.03% of photons emitted from a source in its 
field of view (18). Due to the inherent quantum mottle in 
SPECT, uniformity is critical and nonuniformities should be 
limited to the 1% level. Non uniformity may be due to non­
linearities, regional variation to energy response, and sensitiv­
ity variations that may be corrected with appropriate linearity, 
energy, and sensitivity correction map tables (18). The limit-
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ing factor in SPECT resolution and sensitivity is the collima­
tor, which transforms an intrinsic resolution of 3.5 mm into 
a system resolution of I 0 to 20 mm, depending on the distance 
from the collimator face (18,19). Once again, resolution may 
improve with a smaller pixel size, at a cost of decreased 
precision. The usual SPECT pixel size is 6 mm for a 15" large 
field of view gamma camera and a 64 x 64 matrix, and typical 
full width at half maximum values for a rotating gamma 
camera system vary from 14 to 17 mm, depending on the 
radius of rotation and choice of collimator. Compared to 
planar scintigraphy, SPECT has the additional advantages of 
three-dimensional localization and improved contrast reso­
lution, despite a decreased spatial resolution. Jaszczak (24), 
using cold spheres in a uniform background, demonstrated 
an improved contrast ranging from 0.32 to 0.54, depending 
on the object size and location within the phantom. Improve­
ments in scatter correction can be expected to further enhance 
accurate quantitation (25). Quantitation of small object vol­
umes also is dependent upon the object size, and the SPECT 
system can be calibrated using small object phantoms (26). 
Thus, knowledge of the response of the imaging system is 
required to extract meaningful quantitative data and also is 
important for optimal filter selection (27). Finally, consider­
ation of the sampling theorem (the minimum wavelength that 
can be observed when sampling data is spectrally analyzed is 
twice the spacing between the sampled points) limits the size 
of lesions that can be measured ( 17). 

Differences in the response of the CT and SPECT scanners 
to the anatomical and functional features of the same stimulus 
may create additional problems when the images are fused. 
Intense activity may make a structure appear abnormally 
enlarged, while the situation may be reversed with low activity 
(28). Absence of function in an anatomically normal area 
may be interpreted as absence of the corresponding structure 
(28). Other sources of error that may affect both CT and 
SPECT are partial volume averaging and motion artifacts. 
Discrepancies between CT and PET or SPECT due to partial 
volume averaging may occur from: (I) differences in slice 
thickness between CT ( 10 mm) and SPECT (double thickness 
= 12 mm) (29); (2) slight axial differences in the central 
planes of comparable slices; and (3) differences in body posi­
tioning or gantry angulation. These problems may be partially 
alleviated by using rigid head holders with anatomic markers 
for brain studies (30), and by careful attention to reproducibly 
positioning the patient using external markers (3). Attention 
to patient comfort during the examination may minimize 
patient motion. An additional minor disadvantage of image 
fusion is the loss of resolution and contrast on the CT portion 
of the composite image, which results from the downward 
interpolation of the CT matrix size and the available gray 
scale in order to accommodate the SPECT image (1 ,3). 

IMAGE MATCHING 

Once the limitations of resolution and lesion detection are 
understood for the CT -SPECT model, image matching may 
be discussed. Since the studies are initially collected and 
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processed by two different computers, preliminary data trans­
fer to a common computer system is required. This can be 
accomplished through either cable or a common magnetic 
storage medium, providing that the appropriate software for 
data transmission and reception is available. Alternatively, 
data may be transferred using a digital camera and video 
acquisition board in the common computer system (31). 
While this latter method does not require additional data 
transmission and reception software, some resolution and 
contrast is invariably lost even before further data processing 
is undertaken. Finally, computer fusion may be bypassed 
entirely using direct film superimposition with registered 
transparencies (32); however, this simple approach does not 
permit further computer processing or quantitation. 

Two basic assumptions of image matching are that: (I) the 
two images must be in the same representational form; and 
(2) there exists a similarity relationship between the two 
images (12,33). These assumptions are satisfied for the CT­
SPECT model because (a) the images are both in cross­
sectional form, and (b) a similarity relationship exists between 
images when corresponding slices at the same level in the 
body are compared. Images that fulfill these matching as­
sumptions may still differ from each other by spatial distor­
tions or image displacements (Fig. I). Common image dis­
placements include: expansion, inversion, rotation, horizontal 
translation, vertical translation, horizontal shearing, vertical 
shearing, and elastic deformation ( 4,9,12). For each image 
displacement there is a corresponding image transformation 
(scaling, reflection, rotation, horizontal translation, vertical 
translation, horizontal stretching, vertical stretching, and rub­
ber disformation) that can map one Cartesian coordinate 
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FIG. 1. Common image displacements superimposed on (a) Carte­
sian coordinate system, (b) expansion, (c) inversion, (d) rotation, (e) 
horizontal translation, (f) vertical translation, (g) horizontal shearing, 
(h) vertical shearing, and (i) elastic deformation. 
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system into another (9,22). Transformations are said to com­
mute with each other if they produce the same result regardless 
of the order in which they are performed (e.g., rotation and 
scale changes commute) (9). Thus, CT and SPECT images 
can be matched (registered) with each other, if common 
landmarks points can be identified in each image. 

Geometric transformations of image displacements will 
result in fractional pixel shifts which then must be assigned 
an appropriate gray scale level by interpolation. The simplest 
interpolation scheme is zero-order interpolation (nearest 
neighbor value); however, this often results in dramatic gray 
level changes between adjacent pixels, creating a "blocky" 
appearance. A more desirable approach, which preserves 
edges, is the application of bilinear interpolation using the 
values from the four nearest pixels. Advanced techniques such 
as bicubic spline interpolation and sine or similar functions 
are computationally expensive and offer no significant addi­
tional advantages (34). 

CLINICAL APPROACHES TO IMAGE 
MATCHING 

An image fusion hierarchy of varying complexity (Table I) 
can be conceptualized with the mathematically more sophis­
ticated algorithms offering increased flexibility (22). Separate 
mental integration and computer quantitation of the images 
is adequate in most routine clinical situations (1 ,2,35). Direct 
image superimposition can be accomplished with film trans­
parencies (32), following appropriate magnification correc­
tion. Unfortunately, this simple approach lacks the flexibility 
of computer-based matching algorithms, is not applicable in 
three dimensions, and also does not provide data quantitation. 
Plastic distortion (22) consists of rotating the image or chang­
ing the relative length of size along an axis. It is comprised of 
scaling, rotation, and translation transformations and has 
been used in both two- (31,36,37) and three-dimensions (28, 
38,39) with rigid head holders to study brain function. A 
more accurate matching scheme can be achieved using the 
above transformations in conjunction with horizontal and 
vertical shearing transformations ( 4). This latter method has 
been successfully employed in chest and abdominal imaging 
(3,40). Automated image alignment (4,41) may obviate the 
need for inefficient and expensive operator interaction. 

Rubber disformation is the most complex matching algo­
rithm and is capable of both global and local registration (12, 
22,42). Intuitively, this technique is analogous to deforming 
or stretching the data image on a rubber sheet in order to 
conform to the model image. Initially, the computer identifies 

TABLE 1. Image Fusion Hierarchy 

1 . Direct visual comparison 
2. Image superimposition 
3. Plastic distortion 

a. Scaling, rotation, translation (SRT) transformations 
b. SRT and shearing transformations 

4. Rubber disformation 
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certain pre-established primitive features or elements (e.g., 
straight-edge detectors, curved-edge detectors, circle detectors, 
and intersection detectors) (10) within both the data and 
model images. Following a global matching process, the prim­
itive features of the data image are brought into fine local 
registration with the corresponding primitive features of the 
model image. This final local matching process may be gov­
erned by a cost analysis function in which optimal alignment 
occurs when the cost of deformation is comparable to the cost 
of similarity (12). Alternatively, the process may be monitored 
by computer-based optimization programs such as dynamic 
programming (5,43). Cross-correlation coefficients can be 
used to determine the maximum similarity between the im­
ages ( 42). If commonly identifiable points (often referred to 
as control points) can be located on both images, the registra­
tion can be evaluated based upon how well these points are 
matched (10). 

In addition to the basic matching algorithms described 
above, an ideal program would also contain; ( l) menu driven 
commands for ease of operation; (2) simultaneous display of 
both images for direct comparison; (3) the opportunity to 
window individual images during each step of the program, 
in order to optimally visualize specific regions of interest 
(ROls); and (4) the ability to quantitate the success of image 
registration. Since manual operator alignment may be subjec­
tive ( 1) and inefficient ( 41 ), an automated alignment routine 
could facilitate computer processing. Other desirable software 
features would include: (l) an edge finding algorithm (e.g., 
thresholding, derivative, or region growing techniques) to 
outline various regions of interest ( 44); and (2) the ability to 
provide quantitative data (1 ,2,31 ,35-39,45-47). The final 
composite image may be displayed in several different formats 
(blink mode alternating between the SPECT and CT images, 
simultaneous display using translucency, selected portions of 
the SPECT image in color superimposed on a gray-scale CT 
image, selected SPECT ROis superimposed on a gray-scale 
CT image, and SPECT color isocontours superimposed on a 
gray-scale CT image), depending upon operator preference 
and the capability of the video display terminal (21). 

POTENTIAL APPLICATIONS 
The primary advantage of image fusion in medicine is 

precise anatomical-functional correlation (3,28,30,38,42,47, 
49). Functional abnormalities detected with the inherently 
low resolution images of SPECT or PET can be precisely 
localized on the anatomic images of CT or MRI. The tech­
nique has been employed primarily for quantitative brain 
studies (2,28,31 ,35-39,42,45-47) with registration accuracies 
of< 2 mm (31 ,39). Some authors (2,48,49) have advocated 
the conversion of all images to a stereotactic atlas in order to 
provide a standardized frame of reference and to facilitate the 
planning for neurosurgical biopsies and operations as well as 
radiation therapy. Controversy exists, however, regarding 
which method (direct matching with CT or MRI versus 
matching through an intermediary standardized stereotactic 
atlas) produces the closest registration in three dimensions (2, 
45). 
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Image fusion also has been applied to chest and abdominal 
imaging ( 1 ,3,40,50). Matching ofCT and SPECT images may 
be useful for body contouring and attenuation correction of 
SPECT images using the attenuation coefficients of the CT 
image {14). Unfortunately, less than perfect registration may 
cause many undesirable artifacts. Unique advantages of com­
posite images in whole-body imaging include: (I) establishing 
the physiologic status of ambiguous CT objects (Fig. 2).; (2) 
identification of minimal anatomic abnormalities on CT 
which are of pathologic significance; and (3) planning for 
percutaneous biopsies or surgery in selected cases {3). Re­
cently, image fusion also has been employed with SPECT 
monoclonal antibody imaging (50) for early lesion detection 
and localization and possible future quantitative analysis. 

SUMMARY 

Image fusion is a powerful tool in the investigation of 
structural-functional relationships. Optimal utilization is de­
pendent upon a knowledge of both the limitations of a partic­
ular imaging system as well as an understanding of matching 
assumptions and algorithms. Unique advantages of this tech­
nique include: (I) accurate anatomical-functional correlation; 
(2) early identification and localization of selected pathologic 
lesions; and (3) quantitation of functional ROis with poorly 
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FIG. 2. CT scan of a 65-yr-old female with large cell nonHodgkins 
lymphoma demonstrates a ·mass" at the level of the aortic bifurcation, 
consistent with either recurrent disease or an unopacified bowel loop. 
(B) The 87Ga SPECT scan demonstrated increased activity in the 
lower abdomen, suggestive of adenopathy. (C) Composite SPECT­
CT image. The c;pmposite study demonstrated a correspondence 
between the two abnormalities, compatible with recurrent lymphoma. 

delineated boundaries. Further studies will be required in 
order to establish the precise role of image fusion in clinical 
and research settings. 
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