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This is the third in a series of four continuing education articles 
on computers in nuclear medicine. After studying this article, the 
reader should be able to: 1) understand filtering concepts and fre­
quency space; and 2) be able to determine the appropriate filter 
selection and its application for a given nuclear medicine procedure. 

Filtering is used extensively on nuclear medicine images 
to reduce statistical noise, enhance edges for edge detection, 
and in the reconstruction of tomographic images. As explained 
in a previous continuing education article (1), filtering can 
be performed in either the spatial domain or in frequency 
space. While that article dealt primarily with operations in 
the spatial domain, the purpose of this manuscript is to develop 
the reader's intuition as to how to use frequency space without 
understanding complicated mathematical formulas. By exer­
cising this intuition, the reader will be able to select filters 
for given applications, determine proper cutoff frequencies, 
and even design filters to meet the requirements of new ap­
plications. 

THE FREQUENCY DOMAIN 

Frequency Space 
Frequency domain methods of image enhancement deal with 

the spatial frequencies (cycles/centimeter or cycles/pixel) 
which make up the image. An image can be decomposed into 
a summation of different spatial frequencies. Spatial frequen­
cies relate to the rate of change in intensity (counts) with dis­
tance. The high frequency components define edges, areas 
where there is a rapid change in intensity from bright to dark. 
Regions in an image where the changes are more gradual are 
primarily caused by the lower frequency components. An ex­
ample of such a region is the central area of the lobe of the 
liver from a high-count liver scan. While the concept of fre­
quency space may appear difficult to grasp at first, when intui­
tion is developed the principles can be more straightforward 
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to apply than those used in the spatial domain (2). 
In order to convert an image into its frequency components 

it is necessary to use an image transform, such as a Fourier 
transform, to transfer the spatial image into frequency space. 
The Fourier transform yields the frequencies that are present 
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FIG. 1. Example of how the Fourier transform can decompose a 
square curve into sinusoidal frequency components. The top curve 
is a simulation of the count profile of an ideal flood-source image. The 
lower curves show the five lowest frequency components that make 
up the image. The summation of these five components, along with 
higher frequency (and lower amplitude) components gives the top 
curve. 
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in the image and the amplitude of each frequency. An inverse 
Fourier transform transfers the frequency image back into the 
spatial domain, the conventional format for representing im­
ages. The method used by the computer (often with the aid 
of an array processor) to implement the Fourier transform is 
called a Fast Fourier Transform (FFT). The FFT is a computer 
algorithm which has been optimized for speed. 

An example of how an image can be decomposed into its 
various frequency components can be seen in figure I. The 
top curve is a simulation of a count profile through the center 
of the image of a radioactive flood source. The simulation 
assumes that the flood was imaged for a large number of counts 
(assuming no statistical fluctuations) using a high resolution 
collimator (the pixel count drops off very rapidly at the edge 
of the source). The lower sinusoidal curves represent the five 
lowest frequencies that make up the square-count profile. If 
these frequencies along with several higher frequencies are 
summed, the result is the top curve (note that the higher the 
frequency the smaller the amplitude). 

Filtering 
Filtering in frequency space is accomplished by removing, 

or altering the magnitude of selected frequency components. 
Each specific frequency is multiplied by a factor assigned by 
the filter. If a particular frequency needs to be totally sup­
pressed, the factor assigned to that frequency is set to zero. 
Filters that place emphasis on the low frequency components 
while reducing the high frequency components are called low­
pass filters. If the opposite effect is desired, a high-pass filter 
is applied which reduces the low frequencies. A band-pass 
filter reduces both low and high frequencies allowing only a 
band of frequencies in between to remain. 

Figure 2 demonstrates how the higher and lower frequencies 
affect the image. The square curve again represents a profile 
of a flood source. The rounded curve is the lowest frequency 

component ofthe square profile. Thus, if a low-pass filter was 
applied to the flood image which only allowed this low fre­
quency to go through, the result would appear as a very smooth 
image as evidenced by the disappearance of the sharp square 
edges. The remaining curve is the original count profile with 
the lowest frequency component subtracted out (a high-pass 
filter has been applied). It can be seen that removing the low 
frequency components emphasizes the change in intensity in 
the resulting profile at the location where the sharp square 
edges were defined in the original count profile. 

FILTERS 

Figures 3 through 7 illustrate the results of a computer pro­
gram developed for the purpose of demonstrating how filters 
may be used to modify images. Each of the figures, which 
have the same format, is divided into four sections. Two 64 
x 64 pixel images take up the top half of each figure. The 
image on the left is the input (unfiltered) image and the image 
on the right is the filtered image. The lower left quadrant of 
the figure shows the filter used to modify the image. The fre­
quency spectra of the input and filtered images are shown in 
the lower right quadrant of the figure. The frequencies that 
make up the input image are represented in graphical form 
by the input spectrum (lower right) where the X axis represents 
the spatial frequency in cycles/pixel and the Y axis represents 
the magnitude ofthat frequency (associated with image con­
trast or count difference between black and white). The fre­
quencies of the filtered image are represented by the filtered 
spectrum after the input spectrum has been multiplied by the 
filter function on the lower left. Note that both the filter func­
tion and the frequency spectrum are two-dimensional func­
tions. The one-dimensional plots shown here are simplifica­
tions which permit an easier description of the process. 

The upper image is made up of four spatial frequencies that 
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FIG. 2. High and low frequency contributions 
to the ideal flood source count profile shown 
in Figure 1. The smooth curve is the lowest 
frequency component in the profile. The lower 
curve demonstrates the application of a high­
pass filter. The lowest frequency component 
has been removed from the profile leaving 
only the high frequency components. The 
rapid change in amplitude at the edges of the 
flood source in this curve show how high-pass 

2 filters may be used to emphasize edges in 
images. 
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have been separated into four distinct horizontal rows. This 
pattern is similar to that found when imaging bar phantoms 
for scintillation camera resolution quality control. The fre­
quencies have been separated, instead of being presented on 
top of each other, so that the effects of filtering may be more 
easily demonstrated. The lower row of the image represents 
the highest frequency that can be accurately reproduced, alter­
nating bright and dark pixels yielding 32 bars per 64 pixels 
or one cycle for each two pixels (0.5 cycles/pixel). The next 
two rows represent one cycle for each four pixels (0.25 cycles/ 
pixel) and one cycle for each eight pixels (0.125 cycles/pixel), 
respectively. The top row represents one complete cycle over 
the width of the image or one cycle for 64 pixels. 

The highest possible frequency which may be faithfully dis­
played (0.5 cycles/pixel) is called the Nyquist frequency. If 
the source image has more variations than the Nyquist frequen­
cy it will not be faithfully reproduced, and some high frequen­
cy information will be lost. This loss of information is called 
aliasing. A common example of aliasing is the way the spokes 
of wagon wheels in old westerns on television appear to rotate 
backwards while the wagon is going forwards. This occurs 
because the sampling rate of video (around 30 frames per sec) 
is not fast enough to show a true representation of the wheel 
going forward. The positions of the spokes of the wheels 
change more rapidly than the sampling rate. In the same way, 
if the image source has changes in intensity over a distance 
shorter than two pixels (a higher frequency than the Nyquist 
frequency) the result will be an image that does not accurately 
reflect the radioactive source distribution. 

As was mentioned before, filters may be applied in frequency 
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FIG. 3. Demonstration of Fourier filtering of 
an ideal image with no statistical noise and 
where the spatial frequencies are separated 
and discrete. The input image is made up of 
four components: the highest (64 x 64) 
frequency appears in the lower row 
corresponding to 32 bars per 64 pixels (0.5 
cycles/pixel). The next two rows above it cor­
respond to 16 bars per 64 pixels (0.25 
cycles/pixel) and 8 bars per 64 pixels (0.125 
cycles/pixel). The top row represents one 
complete cycle over the width of the image 
or one cycle for 64 pixels. The discrete 
frequencies plotted in the input spectrum and 
which appear in the input image are multiplied 
by the filter function to yield the filtered 
spectrum used to create the filtered image. 
The filter function is set to one from the DC 
frequency component (0 cycles per pixel) to 
the Nyquist frequency (0.5 cycles/pixel). Thus, 
the output spectrum and image are identical 
to the input spectrum and image. 

space by multiplying the magnitude of a given frequency com­
ponent by the filter magnitude at that frequency. Notice that 
in figure 3, the filter has a value of one over the entire ap­
plicable frequency range (all frequencies below the Nyquist 
frequency). Each frequency component is multiplied by one 
and the output image and spectrum are identical to the input 
image and spectrum. 

von Hann Filter 
A common filter used in nuclear medicine image processing 

is the von Hann filter shown in figure 4. This low-pass filter 
is usually called a Hanning filter in the nuclear medicine field. 
The filter has a magnitude of one at the lowest frequencies 
and decreases to zero at a frequency known as the cutoff fre­
quency. The Hann filter in figure 4 has a cutoff frequency of 
0.5 cycles/pixel and removes this frequency component from 
the image. When this filter multiplies the input image spec­
trum, it can be seen that the 0.5 cycles/pixel frequency bars 
of the input image have been removed in both the filtered 
spectrum and image. The amplitude of the next two middle 
frequency bars have been lessened by the product of the filter 
value at those frequencies, and these bars do not have as much 
contrast in the output image as in the input image. 

Another Hann filter, with a cutoff frequency of 0.25 cycles/ 
pixel, is shown in figure 5. It can be seen that now two rows 
of bars (0.25 and 0.5 cycles/pixel) of the output image are re­
moved. The next lower frequency bar shows diminished con­
trast caused by the lessening of the amplitude of the frequency 
component. As before, the top bars with the lowest frequency 
show little change. 
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Poisson Noise 
One of the primary reasons for applying low-pass (smooth­

ing) filters is to reduce the high-frequency random noise associ­
ated with Poisson noise (statistical count fluctuations). The 
effect of filtering on Poisson noise is shown in figure 6 where 
the same input image used in figure 3 is degraded by the addi­
tion of random noise. The same Hann filter used in figure 4 
is applied. The Hann filter removes the high frequency random 
noise resulting in a better definition of the 0.25 and 0.125 
cycles/pixel bars, but also removes the highest (0.5 cycles/pixel) 
frequency component of the image and markedly reduces con­
trast in the 0.125 cycles/pixel bars. The Hann filter appears 
to be better suited for studies where higher statistical accuracy 
is needed at the expense of a loss in spatial resolution. 

Butterworth Filter 
Another low-pass filter, the Butterworth filter, is demonstrat­

ed in figure 7. Two parameters are needed to define the Butter­
worth filter, the cutoff frequency and the order of the filter. 
The order of the filter is related to how fast the filter is cut 
off, the higher the order the sharper the cutoff. The Butter­
worth filter may be appTied using a sharper cutoff than the 
Hann filter, retaining contrast at higher frequencies while still 
eliminating the Poisson noise. The filter in figure 7 has a cut­
off of 0.4 cycles/pixel and an order of 25. The Butterworth 
filter is better suited for studies where higher resolution needs 
to be preserved at the expense of higher statistical count 
fluctuations. 

Definition Ambiguities 
Before going on to clinical applications of filtering, a word 

VOLUME 14, NUMBER 3, SEPTEMBER 1986 

FIG. 4. Demonstration of Fourier filtering 
using a Hann filter with a cutoff frequency of 
0.5 cycles/pixel. The discrete frequencies 
plotted in the input spectrum are multiplied 
by the filter function to yield the filtered 
spectrum used to create the filtered image. 
Note that the 0.5 cycles/pixel frequency, which 
is the highest frequency in the input image, 
after it is multiplied by the zero value of the 
filter at that frequency, totally disappears in 
both the output spectrum and filtered image. 
Note that the amplitude (contrast) of the next 
higher frequency is also reduced by the filter. 

of caution should be introduced about the terminology used 
by the nuclear medicine industry in describing filters. While 
some manufacturers define the cutoff frequency at the point 
where a filter value drops to zero, others define the cutoff fre­
quency as the point where the filter magnitude drops below 
a given value. The meaning of the term cutoff frequency may 
also differ for different kinds of filters (even by the same manu­
facturer). It is also important to define the units being used 
when speaking of frequencies. Frequencies may be defined 
as cycles/pixel, cycles/centimeter, or in any number of other 
units. Unless it is clear which units are being used, and how 
the cutoff frequency is defined, inappropriate values may be 
used to define filters, resulting in improper filtering. 

CLINICAL APPLICATIONS 

Planar Imaging 
As mentioned earlier, the inclusion of random noise in nu­

clear medicine images requires the application of digital image 
processing techniques for removal. The characteristics which 
are modified by the filter operator are the spatial and contrast 
resolution and the signal-to-noise ratio (3). Application of a 
filter to improve one of these characteristics, whether in the 
spatial or frequency domain, will affect the others. The choice 
of the type and design of filter to use is based on the tradeoffs 
of these characteristics, which depend on the type of imaging 
and information to be extracted. Therefore, care must be taken 
in selecting the filter of choice so that erroneous results are 
not produced. 

Most nuclear medicine computer systems offer a selection 
of image processing filters that fall into the spatial or frequency 
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FIG. 5. Demonstration of Fourier filtering 
using a Hann filter with a cutoff of 0.25 
cycles/pixel. Note that the two highest 
frequencies (0.5 cycles/pixel and 0.25 
cycles/pixel) totally disappear in both the 
output spectrum and filtered image after 
applying the filter. Note that the ampliture 
(contrast) of the next higher frequency is also 
reduced by the filter. 

FIG. 6. Demonstration of Fourier filtering of 
the image in Figure 3 where statistical noise 
has been added. The filter function is a Hann 
filter with a cutoff frequency of 0.5 cycles/pixel. 
Much of the high frequency noise, along with 
the highest frequency (0.5 cycles/per pixel) 
disappears in both the output spectrum and 
filtered image. Note that the amplitude 
(contrast) of the next higher frequency is also 
reduced by the filter. 
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FIG. 7. Demonstration of Fourier filtering of 
the input image from Figure 6 using a 
Butterworth filter. As was the case for the 
Hanning filter in Figure 6, much of the noise, 
along with the highest frequency (0.5 
cycles/pixel) disappears in both the output 
spectrum and filtered image. Note that the 
amplitude (contrast) of the next higher 
frequency is much greater than with the use 
of the Hann filter. Thus, contrast has been 
retained, while the noise has been effectively 
removed. 

FIG. 8. Representative planar bone scan 
(upper left), that has been filtered in frequency 
space (upper right) using a Hanning filter with 
cutoff frequency of 0.5 cycles/pixel (lower left). 
Spectra of amplitude versus frequency for the 
unfiltered and filtered image are shown (lower 
right). 
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domain. The selection of which to use depends on two factors, 
the degree of accuracy and the amount of time available for 
filtering. For example a 3 x 3 or 5 x 5 spatial kernel may yield 
acceptable results for viewing a 64 x 64 multigated cardiac 
study. But when more exacting solutions are required, as in 
tomography, the spatial kernel becomes excessively large and 
takes significant time to apply to an image. There exists a 
break-even point at which the use of a frequency domain filter 
becomes not only more exact but faster (4,5). Because we are 
discussing frequency filtering, we will assume that the break 
point has been exceeded. 

Figure 8 is formatted in the same way as figure 3. Figure 
8 shows an example of a planar bone image before (upper left) 
and after (upper right) application of a Hanning filter with 
a cutoff frequency of0.5 cycles/pixel. In the spectrum display 
(lower right) one can see the effect of the filter on the higher 
frequencies. While the filtered image shows a retention of rib 
detail, the high frequency variations (graininess) in the image 
have been removed. In this case the signal-to-noise ratio is 
improved, with a subsequent loss in some spatial resolution. 

Figure 9 is an example of the same planar bone image before 
and after the application of a Butterworth filter with a cutoff 
frequency of 0.1 cycles/pixel. While not clinically useful for 
this image, it demonstrates effectively the point of creating 
erroneous results. In the filtered image, one can see the vastly 
improved signal-to-noise ratio, and the significant loss of spa­
tial resolution. In this case, not only has the higher frequency 
noise been removed, but clinical information has been filtered 
out, causing loss of detail in the thorax and spine and the 
removal of the frequency defining the ribs. 
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Tomography 
The basic process for reconstructing tomographic images 

has been presented elsewhere ( 6). Tomographic projections 
are nothing more than a series of planar images taken at differ­
ent angles around the patient. These images are then back­
projected into transaxial images. The transaxial images can 
then be re-oriented to produce sagittal, coronal, or oblique 
angle images. As with planar images, tomographic projection 
data includes a certain amount of noise. This noise, however, 
is amplified in the backprojection technique and causes the 
resultant transaxial information to appear different from the 
radioactive distribution being studied (1). 

More specifically, the goal of tomographic reconstruction 
is to provide a blur-corrected transaxial image from processed 
planar projections. The solution to this problem in frequency 
space involves the application of a ramp filter (Fig. 10) to the 
frequency components of each projection. Once filtered, each 
projection is transformed back into the conventional spatial 
domain and then backprojected to form the blur-corrected 
transaxial tomograms. Unfortunately, this technique may be 
time consuming. 

The ramp filter, as shown in Figure 10, is a high-pass filter. 
Previously it was explained that high-pass filters enhance the 
edges ofthe radioactive distribution in the image. Intuitively, 
the reconstruction process known as filtered backprojection 
may be thought of as first extracting the edges of a three­
dimensional radioactive source from different angles and sec­
ond backprojecting the edges from the different angles to gen­
erate the count distribution in a transaxial image. The ramp 
filter, being a high-pass filter that linearly enhances higher 

FIG. 9. Representative planar bone scan 
(upper left), that has been over filtered in 
frequency space (upper right) using a 
Butterworth filter with cutoff frequency of 0.125 
cycles/pixel (lower left). Spectra of amplitude 
versus frequency for the unfiltered and filtered 
image is shown (lower right). Note that the 
frequency which defines the ribs (the middle 
peak) has been removed and is the same for 
the ribs in the resultant planar image. 
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frequencies, yields the highest resolution possible in a recon­
struction but also propagates the high frequency noise associ­
ated with low-count statistics. This propagation of noise often 
results in clinically uninterpretable images (Fig. 11, 
unfiltered-high). 

Modification to the ramp filter must be made to compensate 
for the undesirable noise. This is done by combining the ramp 
characteristics with those of a low-pass filter or window. Han­
ning and Butterworth filters are two commonly used windows 
that can be multiplied by a ramp filter to yield different degrees 
of trade-off between reduction of statistical noise versus 
degradation of spatial and contrast resolution. 

Figure lOA, illustrates examples of a rectangular filter, a 
Hanning filter with the cutoff frequency of 0.5 cycles/pixel, 
and a Hanning filter with the cutoff frequency set to 0.375, 
which may be used to window the ramp filter. When these 
windows are multiplied by the ramp, the filter function then 
becomes those in figure lOB. When this is done, the filter is 
referred to as a ramp-Hanning filter for clarification and is 
somewhat characteristic of a band-pass filter. 

Noise can be removed from the final images either by apply­
ing the filters to the planar projections prior to backprojection 
(filtered backprojection) or afterwards by filtering the trans­
axial slices (post-processing filtering). Whether to filter before 
or after backprojection, remains debatable. It may be argued 
that filtering prior to backprojection is more desirable for two 
reasons. First, it reduces the propagation of noise at an earlier 
stage in the image formation process. Second, it promotes the 
implementation of a filter symmetric in three dimensions (same 
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resolution in the X, Y, and Z directions). Proponents of post­
processing would argue that the same results could be obtained 
by the careful selection of filters applied to the transaxial 
images. 

One of the more interesting properties of frequency filtering 
is that once a frequency has been removed from an image by 
a filter, further processing will not bring that frequency back 
to the image. Figure ll, which contains tomographic images 
from a 201Tl study, helps to demonstrate this point. 

The three filters in figure 10 were separately applied to the 
unprocessed planar 201Tl projections and backprojected (Fig. 
ll, unfiltered). These same filters were applied to planar pro­
jections smoothed with a nine-point smooth operator (1) whicq 
duplicates the effects of a Hann filter (with a cut-off of 0.5 
cycles/pixel) and backprojected (Fig. ll, filtered). One can 
notice the projection of noise in the image labeled unfiltered­
high and acceptable levels of resolution and noise suppression 
in the unfiltered medium and low (resolution) images. Of inter­
est are the images in the filtered section (right) which show 
little or no change when refiltered. Because the projections 
were prefiltered, the application of another filter with a higher 
cutoff frequency has minimal effect. This principle is impor­
tant in predicting the effect of applying multiple filters at dif­
ferent stages of processing. 

SUMMARY 

Nuclear medicine images (planar and tomographic) can be 
decomposed into their corresponding frequency patterns by 
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FIG. 10. (A) Plot of filter amplitude versus frequency for a rectangular Hanning with cutoff of 0.5 cycles/pixel and Hanning with cutoff of 0.375 
cycles/pixel filter windows. The same filters (B) were then multiplied by a ramp filter and plotted as magnitude versus frequency. 
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FIG. 11. The same set of 201 TI raw projection images backprojected 
without prefiltering (unfiltered) and backprojected after prefiltering 
using a nine-point smoothing operator (filtered). The high, medium, 
and low-pass frequency filters defined in Figure 108 were then applied 
to representative transaxial slices. In the unfiltered data set, noise is 
progressively removed with the application of the filters. In the filtered 
data set, however, little or no change can be seen in transaxial data 
because noise along with higher frequencies had been removed 
previously by the prefilter. 

use of FFTs. This transformed image can then be returned to 
the spatial domain using an inverse Fourier transform. Once 
an image is in the frequency domain, selected frequencies can 
be left alone, modified, or removed by application of filters. 

Filters can be described by their characteristic shape (Han­
ning, Butterworth, ramp, etc.) and by their cutoff frequency. 
The highest frequency which can be faithfully reproduced in 
the filtered or unfiltered image is the Nyquist frequency or 
0.5 cycles/pixel. A general way of describing filters is by the 
frequencies that are allowed to pass through them (high-pass, 
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low-pass, band-pass). Different manufacturers describe the 
same filter in different ways. 

Trade-offs in statistical noise as opposed to spatial and con­
trast resolution are the two main criteria for selecting filters. 

The use of filters in frequency space is preferred over proc­
essing in the spatial domain because of their superior flexibility 
in defining the shape of the filter function, and because they 
are intuitively more straightforward. 

The solution to the tomographic reconstruction problem is 
the application of the ramp filter to each projection prior to 
backprojection. This filter maintains the highest degree of 
spatial resolution but enhances noise in the resultant transaxial 
slices. Therefore, modification to the ramp filter is made using 
filter characteristics from the Hanning, Butterworth, or other 
filters. The resultant filter being referred to as Ramp-Hanning, 
for example. 

Filtering may be done prior to or after backprojection. Once 
a frequency component has been removed from an image, how­
ever, there is no filter that can return it. 
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