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This is the final article in a continuing education series on radio­
immunoassay. After reading and studying this article, the reader 
should be able to: 1) discuss instrumentation available for RIA; 
2) compare and contrast various methods of data reduction for RIA; 
and 3) describe quality assurance parameters of curve fitting. 

During the past 10 years, the instrumentation available for 
RIA has evolved rapidly. In 1975, the state-of-the-art was a 
single Nal crystal with associated photon energy selection elec­
tronics coupled to a snaking arrangement of sample holders 
that sequentially counted a large series of tubes. Data analysis 
typically used a standards curve drawn through an eyeball 
french-curve technique or a logit-log transformation that, 
hopefully, created a straight line standards curve. Presently, 
a modem RIA system can be simply a series of reagent bottles 
connected to a microcomputer that performs the biochemistry, 
counts the tubes, and analyzes the results. The trick is to ac­
quire a properly designed automated system with the reasoning 
power of an experienced technologist. Although the automated 
systems have many advantages (notably speed and low recur­
ring costs), there are also disadvantages such as initial system 
cost, lack of adaptability to new assays, or lack of knowledge 
about the accuracy of the standards curve which results from 
the black -box nature of the computer system. The user contem­
plating purchase of an RIA system would be advised to con­
sider the biochemistry equipment, the counter, and the analysis 
computer as an integral package. This article will review these 
components of an RIA system separately. 

AUTOMATED AND MANUAL BIOCHEMISTRY: 
A COMPARISON 

If funding is not a problem, then the average RIA laboratory 
could make good use of one of the automated RIA systems 
(1). These automated systems perform the entire assay-from 
serum sample to patient results. These systems typically consist 
of the automated reagent system for the RIA, coupled toNal 
detector, all controlled by a microcomputer. There are two 
basic types of automated RIA systems. One is the batch system 
which is an automated process for handling a coated tube assay. 
The system automatically pipets the sample and combines it 
with reagents, incubates the reaction tube and, after separating 
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free from bound, counts the tube and then calculates there­
sults. The second type of system is a cycle-type process. In 
this case, the sample is combined with reagent in a continuous 
flow line which allows ligand and antibody to react. The sam­
ple is then passed through a sold phase reuseable antibody 
chamber for the purpose of separating bound and free activity. 
The separated fractions each pass through the counting coil 
where a microcomputer stores the information and later assem­
bles the calculations of the assay. The entire system is then 
recycled in preparation for the next consecutive sample. The 
throughput of the two systems will vary because of the incuba­
tion time in the batch system as compared to the cycle time 
of the cycle system. Depending on the length of the assay runs 
involved, this factor may be a significant consideration. 

The principal advantages of automated RIA are as follows: 
1. The assay is automated so that less technologist skill is 

required than that of a manual assay. 
2. The automation frees the technologist to perform other 

functions. 
3. The cost of an assay is less than that of the manual method 

because of reagent savings and labor costs. 
4. The precision and accuracy is comparable to and, in some 

cases, better than that of the manual method. 
The principle disadvantages include: 
1. The initial equipment purchase may be cost-prohibitive. 
2. A limited number of assays are offered by the various man­

ufacturers. 
3. New assays cannot be added by the user. 
4. Other manufacturers' reagents or methodologies cannot 

be used. 
It would appear, therefore, that an automated analysis system 

is most suitable as one of the methods, but not the only method, 
for RIA in a hospital where skilled technologists are available. 
A hospital with technologists less experienced in RIA could 
use an automated system to begin an RIA program for the com­
monly available thyroid and digoxin assays. 

NUCLEAR COUNTING SYSTEM 

A single or dual Nal well counter is typically used in auto­
mated RIA analysis. For those hospitals performing the RIA 
biochemistry by manual methods, a multi-detector system 
greatly increases throughput. One manufacturer* offers a 
20-well system so that 200 tubes can be counted for 1 min 
each in only 10 min. This system requires technologist atten­
tion to sequentially load racks of 20 tubes. Alternatively, the 
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user can purchase a system with fewer detectors, typically four, 
and an auto sample changer. The advantage of an auto sample 
changer is that it frees the technologist to perform other tasks. 
For assays with fewer than 100 tubes, the speed advantages 
of a 20-well counter probably outweigh the advantages of an 
auto sample changer. Of course, any auto sample changer in­
vites mechanical failure, and the potential user of such equip­
ment is advised to contact other current users to assess relia­
bility. 

Regardless of the type of detector selected, it is necessary 
to evaluate the ease of pulse height analysis (window) setting. 
A multi-channel analyzer spectrum display with highlighted 
window channels would be most desirable. This type of display 
provides rapid and easy visual assessment of window setting 
and is more convenient than the old single-channel analyzer 
with its confusing array of controls for amplifier gain and num­
ber of channels per keY. Some of the newer counting systems 
are computer controlled, and the user only has to specify the 
radionuclide, typically 12sl or s? Co. The computer then selects 
an appropriate window but may not display spectrum informa­
tion. This black-box window setting, while very convenient, 
can make it difficult to insure adequate detector quality assur­
ance. Any multi-well counter must have the provision to cali­
brate the energy scale for each detector and balance each detec­
tor to have equal counting efficiency. A method of monitoring 
this calibration and detector balancing should be provided. 

Lastly, the interface between the detector and the analysis 
system should be considered. A counter which simply prints 
raw counts and leaves the user to enter the data by hand into 
the analysis system is most tedious. Many counters provide 
output compatible with a teletype or other printer and paper 
tape which can then be read by the analysis system. 

CURVE FITTING 

The task of curve fitting for RIA standards is universal, re­
gardless of which type of biochemistry or counter system is 
chosen. The data consist of approximately eight standard data 
points that represent an antigen concentration (x-axis) and per­
cent bound (y-axis). Percent bound (%B) is generally taken 
as the standard counts compared to the total counts added to 
each tube although percent counts compared to B0 may also 
be used. The task is to join the standard points with a smooth 
curve and to read patient concentrations from this curve based 
on the patient %B. Mathematically, the task is to find the func­
tion (F) of concentration (C) that adequately describes the 
standards data, %B = F(C), both at and between the standard 
data points. The literature (2-4) contains discussions that at­
tempt to create a mathematical formula based on the biochemi­
cal processes involved in RIA. In a radioimmunoassay, the 
patient sample antigen (Ag) competes in the test tube with 
added radioactively labeled antigen (Ag*) for a limited amount 
of added antibody (Ab): 

Ag + Ab + Ag* = AgAb + Ag*Ab + Ag + Ag* 

The bound antigen-antibody complexes are counted in a scintil-
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lation counter following chemical separation from the remain­
ing free antigen. As concentration of patient antigen Ag (the 
x-axis) increases, the radioactive bound fraction Ag*Ab (the 
y-axis) will decrease because of competitive binding between 
Ag and Ag* for the antibody. An alternative assay procedure 
is an immunoradiometric assay (IRMA), which involves the 
addition of excess radiolabeled antibodies: 

Ag + Ab* = AgAb* + Ab* 

Here the radioactive bound fraction is proportional to the 
patient antigen level so that the %B increases as concentration 
increases. Theoretical models for these processes have been 
proposed based on either mass action theory (the Scatchard 
plot), dilution principles, or probability analysis (2). These 
models lead to equations that explain, at least for some assays, 
the shape of the standards curve in a theoretically satisfying 
manner. These theories do not guarantee a more accurate or 
precise standards curve than the following empirical approach: 
If the fitting function appears to adequately describe the stand­
ards data, then use it. Certainly, it would be preferable if one 
theory could completely explain all of RIA, but the wealth 
of assumptions in the theories (e.g., first order kinetics, uni­
valent antibodies, lack of allosteric effects on binding, and in­
dependence of binding on antigen concentration) and the vast 
array of different formats for RIA kits suggests that no one 
theory is likely to explain all of RIA. We have followed the 
empirical approach by treating the standards curve as a smooth 
and slowly varying function of concentration. 

Given a set of %B and C data values, the goal is to find 
the best fit curve using the following formula: 

f(%B) = F [g(C)] 

The curve is defined by the functions f, F, and g, which are 
determined empirically by inspection of the shape of the stand­
ards plot. The least squares, or regression method, is then 
used to solve for parameters in these functions (5,6). Histor­
ically, several fitting functions have been found to provide good 
results (2). Three classes of fitting functions (logit-log, 
polynomial, and spline) will be discussed. 

Logit-Log 
The first method used for analysis of RIA data was logit 

(%B) as opposed to log (C) as a linear least squares straight 
line fit. The logit (%B) is defined as log [%B/(100 - %B] 
or log (%B/% Free), where log is the natural log function. 
The logit was popularized for various statistical purposes 
earlier in this century (7). In this method, the function f is 
the logit function, g is the natural log function, and F is a 
straight line with Y-intercept a0 and slope a1: 

logit (%B) = a0 + a1 log (C) 

Or let Y = logit (%B) and X = log (C): 

Y = ao + a1 X 

245 



A 50. 8 50. + 

40. 40. 

%B %B 

30. 30. 

20. 20. 

+ + 
10. T4 ~gJdl 10. LOG T4 ~g/dl 

0.0 8.0 16. 24. 32. 2 4 8 16 32 

FIG. 1. A logit·log fit to the T
4 

standard data as listed in Appendix A, 8, and Table 1. (A) A linear x-axis is convenient to read, but it results 
in uneven x-axis spacing between the data points. (8) A log x-axis, which is not as convenient to read, equalizes the x-axis spacing for standard 
concentrations that are a common multiple (e.g., 2x) of each other. 

The best fit values of ao and a 1 are found by the least squares 
technique of minimizing the sum of the squares of the differ­
ences in % B between the standard data points and the straight 
line fit. The a0 and a1 (which define the straight line fit) are 
the values which minimize the quantity: 

N 
X2 =I; [(ith %Bdatavalue)- (%Bonthefittedlineatithconc))2 

i=l 

or 
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i= 1 
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In this instance, there are N standard data points. The equations 
for a0 and a1 are straightforward and easily amenable to cal­
culation on a preprogrammed pocket calculator or on a micro­
computer in BASIC. Figure 1 shows a logit-log least squares 
fit to T4 data. The fitted curve is shown on both a linear x-axis 
(Fig. lA) and with a log x-axis (Fig. lB). The log x-axis is 
preferred by some people since it equalizes the x-axis distance 
between the standard data points. Appendix A shows the math­
ematical details, and Table 1 shows the predicted concentra­
tions for the standards. A similar analysis, though less precise, 
can be obtained using logit-log graph paper and an eyeball 
best fit straight line. 

Once the standards curve is determined, the patient con­
centration for some % B is obtained by inverting the fitting 
equation: 

~l 
40. 

%B 

30. 

20. 

10. LOG T4 ~g/dl 

2 4 8 16 32 

FIG. 2. A four-parameter or end-point adjustment logit-log defines the standards curve (see Appendix C). 
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FIG. 3. A cubic polynomial on the square root of concentration defines the standards curve (see Appendix D). 

C = exp {[Jogit (%B) - a0]/a1} 

The pocket calculator or microcomputer can be used to cal­
culate the concentration predicted by the straight line for some 
%B (see Appendix B). Unfortunately, the simple logit-log 
transformation often does not fit the data well as seen in figure 
1. A point may appear close to the logit-log fit, but because 
of logarithmic compression of the x-axis, this small distance 
of the data point from the line may result in a large (10-20%) 
inaccuracy in concentration. This method will always produce 
a "best fit" line, but if the data are not truly linear then the 
logit-log fit is unacceptable. The data points in figure 1B clearly 
appear to have structure not described by the logit-log fit. We 
have completely abandoned the use of the simple logit-log 
transform in favor of more powerful methods. 

An improvement over the simple logit-log, referred to as 
four-parameter logit or end-point adjustment, is to modify the 
method to account for its extreme sensitivity to end points of 
the data by using: 

logit [(%B - BMIN)/(BMAX - %B)] = a0 + a1 log (C) 

In this instance, the fitted curve is described by four parameters 
to be found by a least squares analysis (BMIN, BMAX, a0 , 

a 1). The parameter BMIN is related to the nonspecific bind­
ing in the RIA, and BMAX is related to the %Bat zero con­
centration (8,9). The assay need not include a measure of 
BMIN or BMAX. The initial values of BMIN and BMAX 
are estimated from the minimum and maximum % B in the 
standards data set, and these parameters are then adjusted 
iteratively (adjust and retry the fit until the answers converge 
to a best fit). The computer defines the four parameters of 
a best fit curve. Figure 2 shows the T4 results with a standards 
curve that is much improved over the simple logit-log in figure 
1. This fitting equation results in a nonlinear curve which 
appears to accurately describe the data points. Table 1 and 
Appendix A contain mathematical details. This method is used 
by several of the automated analysis systems, t and has proven 
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to be satisfactory for T3 RIA, T4 , and digoxin assays. This 
method requires use of a microcomputer or programmable 
calculator since it involves more complex calculations than 
the simple logit-log. 

An additional important point is to use a weighted least 
squares fit, which means that data points which lie far from 
the fitted line (outliers) are given less importance in calculating 
the best straight line fit. This factor prevents outliers from 
unduly influencing the standards curve (10). Another useful 
weighting technique is to allow standards in the mid-range of 
concentration to have more effect on the curve than that of 
standards at the low and high end. 

Regardless of the logit-log curve fitting adopted, it is neces­
sary to carefully inspect the entire curve fit and to perform 
quality assurance checks on the goodness-of-fit by examining 
the correlation coefficient and standard error of the estimate 
(SEE) as detailed below. It is far too easy to accept an inappro­
priate curve (such as Fig. I) just because it was produced by 
the computer. 

Polynomial Curve Fitting 
The agreement between the standard data points and the 

curve is governed by the possible curve shapes allowed by the 
fitting function. If the data are not on a straight line in logit­
log space, then a logit-log fit will never be as accurate as a 
curvilinear approach in which the curve is not restricted to 
a straight line shape. Polynomials have often been used to 
describe the shape of the standards curve, which often 
resembles (all or only a segment ot) a half bell-shaped, 
sigmoid, or dose response curve (11). A polynomial of order 
n is defined as: 

or 

n 
y = E a;X; 

i=O 
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The coefficients a; define the best fit curve. A straight line 
is a first order polynomial, a quadratic is a second order poly­
nomial, and a cubic is a third order polynomial. Polynomials 
are popular as fitting functions because the shape of the curve 
is governed by the order of the polynomial in a regular fashion, 
and because the least squares regression equations for a poly­
nomial are solvable for the parameters ar It is known that an 
(n-1)th order polynomial exactly fits n data points (e.g., a 
straight line or first order polynomial passes exactly through 
any two data points).lt is therefore important to avoid choosing 
too high an order polynomial which may lead to overfitting 
or unrealistic wiggles in the curve. If the standards data are 
flatter at low and high concentrations, with a steeper response 
at middle concentrations, then a cubic polynomial is suggested 
to follow this curve shape. A straight line could not follow 
this shape, nor could a quadratic which has a constant curva­
ture. A polynomial of order higher than a cubic is not neces­
sary. Experience over the past 10 yr (2 ,11) has suggested that 
a cubic polynomial on the square root of the concentration 
will provide a satisfactory curve fit to all assays we have tried, 
which include a variety of RIA and IRMA assays (B-12, CEA, 
digoxin, ferritin, folate, gastrin, gentamicin, prolactin, T3, T4 , 

and TSH). The task is to find the coefficients a0-a3 for the 
best fit cubic in the following equation: 

3 
%B = E a; (Co.s); 

i=O 

The least squares technique yields four equations in the four 
unknown coefficients. Obtaining a solution requires a com­
puter program, and such software is readily available in the 
literature (5) or as a commercial package from microcomputer 
software vendors. Figure 3 shows a cubic fit for the same T4 

data as in figures 1 and 2. Table 1 shows the concentration 
values predicted for the standards. 

Upon determining the best fit, it is necessary to carefully 
inspect the fitted curve and to examine the goodness-of-fit 
parameters including correlation and SEE. If the curve fit is 
acceptable (as described below), then the equation is inverted 
to find the patient concentration based on the measured % B 
(12). Appendix D contains additional details. This factor is 
analogous to solving a quadratic equation with two roots with 
the exception in this instance of a cubic with three roots, or 
three possible answers for the concentration for any given %B. 
Deciding which of the three roots to use for the patient con­
centration divides into two possible categories, depending on 
the coefficients ao-a3 • If the solution for the three concentra­
tions yields one real root and two imaginary roots, then the 
real root is chosen as the patient concentration. If the solution 
for the three concentrations yields three real roots (two of 
which may be identical), the cubic curve has a maximum (it 
humps up) or a minimum (it dips down) value so that further 
consideration is necessary to properly choose the correct con­
centration. These considerations will be handled by the com­
puter program involved, but the user is ultimately responsible 
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for insuring that the standards curve has no minimum or maxi­
mum within the range of concentration of the standards. We 
have termed a minimum or maximum of the cubic as pathologi­
cal curve behavior. It generally occurs at very low or very 
high concentrations, in which the standards curve shows little 
slope. The problem is best avoided by using linear interpolation 
between the two lowest and the two highest standards (2). 

In this instance, a weighting procedure may be helpful in 
removing the undue effects of outliers, but we have not found 
this to be necessary. Nor is it trivial to decide on a proper 
weighting method for a cubic fit. One of the commercially 
available auto counter and microcomputer systems* uses poly­
nomial regression for the standards curve. We have found that 
it produces satisfactory standard curves for all the assays listed 
above under polynomial curve fitting. Another system* offers 
both polynomial regression and a four-parameter logit-log 
regression. 

Spline Fitting 
A spline is defined mathematically as a function that joins 

the standard data points in a connect-the-dots fashion with a 
smooth curve between each pair of data points. By definition, 
the spline curve, unlike a regression fit which attempts to fit 
a specified function of restricted shape to the data points, 
passes precisely through each standard data point. The spline 
is usually a cubic between the data points, which gives it suffi­
cient freedom to wriggle and change slope between data points. 
The spline function, for instance, will pass through any data 
point and includes replicates with the same concentration but 
different %B. Splines are commonly used to form highly irreg­
ular contours such as the borders of a geographical map or 
the outline of an automobile shape in three dimensions. It is 
this pliable nature that dooms the spline as far as RIA is con­
cerned. We believe that the assay biochemistry is represented 
by a curve between data points that is free of up-down wiggles. 
We also realize that each standard data point is contaminated 
by systemic error (e.g., pipette error) and by statistical noise 
so that requiring the standard curve to actually pass through 
each data point is unrealistic. 

Quality Assurance for Curve Fitting 
It is mandatory to perform a visual examination of the stand­

ard curve plot with the data points and curve clearly shown 
as in figures 1-3. A simple printout of the predicted concentra­
tion for each standard (as in Table 1) is not sufficient because 
the goodness of the curve fit between the data points must be 
evaluated by the experienced eye. This printout can be of criti­
cal importance if the method chosen is polynomial regression 
in which the curve can hump up or dip down bizarrely between 
data points. For fits based on simple logit-log, it is important 
to insure that an outlier has not unduly shifted the curve. Fur­
thermore, the data should actually appear to lie on the fitted 
curve rather than as illustrated in figure 1. Remember that the 
curve fitting methods will always produce a best fit line, but 
this is no guarantee that the line truly describes the data points. 

If the visual examination is satisfactoy, the user should pro­
ceed to examine the correlation coefficient (r) and the SEE 
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TABLE 1. T4 Concentration ~t91dl* 

Model Prediction 

Standard Four-Parameter Cubic 
Data Value Loglt-Log Log it-Log Polynomial 

1 1.44 0.99 1.07 
2 1.85 1.95 1.89 
4 2.90 3.90 3.85 
8 6.25 8.26 8.43 

16 15.3 15.8 15.6 
32 44.8 32.1 32.4 

Goodness-of-Fit 

r 0.975 0.999 0.999 
SEE 3.4 0.4 0.7 

*in the T
4 

concentration data with the results predicted by ~hree dif­
ferent curve fitting methods, the logit-log fit is inferior to the four­
parameter logit and cubic polynomial as judged by the SEE. The 
curves are illustrated in figures 1-3. 

or syx' both of which are useful goodness-of-fit parameters 
(13,14). The magnitude of the correlation coefficient (i.e., 
ignoring its sign) describes the strength of the relationship be­
tween concentration and %B; 1 is a perfect fit and 0 implies 
no relationship. The closer the correlation is to 1, the better 
the fit. The correlation coefficients from figures 1-3 are 0.975, 
0.999, and 0.999, respectively. Figure 1 is not as good a fit 
as figures 2 and 3, but the correlation appears to be less sensi­
tive than a visual appraisal of the differences in these fits. The 
correlation should be monitored from one day to the next with 
lowered correlation (beyond -2 s.d. of previous results) indi­
cating a cause for concern. Checking the probability value 
of the correlation is of little help since a significant probability 
will always result from any curve that your eye would accept. 

The SEE is a similar but slightly more descriptive goodness­
of-fit parameter which describes how close the data points are 
to the fitted curve. Crudely, the SEE can be thought of as the 
average vertical distance on the standards plot between the 
data points and the fitted curve. For example, figure 1 has a 
SEE of 3.4% which indicates that the average data point dis­
agrees with the fitted curve by 3.4 %B units. A SEE of zero 
is a perfect fit (the curve passes through each point), and any 
points far from the curve will quickly cause a large increase 
in the SEE. The SEE is a more sensitive indicator of goodness­
of-fit than correlation. The SEE for figures 2 and 3 is 0.4 and 
0.7, respectively. The SEE should be monitored just like any 
RIA quality assurance parameter, perhaps by Levey-Jennings 
plots, which compares today's results to previous results. 

The coefficients in the fitting equation can also be monitored 
as quality assurance (QA) parameters for logit-log in which 
the intercept and slope have simple geometric interpretations. 

Many software vendors may generate their own particular 
QA parameters that are probably related to the correlation or 
SEE. It is advisable to monitor these vendor parameters after 
deciding which parameters correspond most closely to correla­
tion and SEE. 
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CONCLUSION 

Choose an analysis system with both polynomial regression 
and end-point adjustment logit-log when available. The poly­
nomial may be more versatile, but the end-point adjustment 
logit is not subject to unwanted slope changes between data 
points as is the polynomial {15). Experiment with the software 
on various assays and adopt the fitting method that produces 
the most satisfactory curve fit (best correlation and smallest 
SEE). Be sure to include a visual judgment of the entire curve 
fit. Beware of straight line fits to nonlinear data and strange 
kinks at the low and high end of polynomial fits. A simple 
printout of results for the standard data points is insufficient. 
The system should also allow calculations for a variety of 
assays that do not require curve fitting such as T3 uptake and 
a variety of hepatitis assays. Software can be purchased from 
commercial RIA vendors,*t* or users with FORTRAN imag­
ing computers are welcome to adopt our RIA software. 

The software should include an easy method of modifying 
existing assay protocols and of adding new assays that were 
not previously considered by the software vendor. Do not take 
the word of the vendor in this matter without an actual demon­
stration of adding a new assay. Black-box software, which can­
not be modified by the user, is unacceptable. 

If the analysis software should be interfaced directly to the 
nuclear counter, the user must consider how to transport data 
from the counter to the analysis computer. This is usually 
accomplished by cumbersome paper tape or keyboard entry 
of data. An auto analyzer system should handle all data from 
beginning biochemistry to final concentration printout. The 
more advanced department should consider interfacing the 
RIA computer to the hospital's main computer for immediate 
transmission of RIA results to the terminals on the patient 
wards. 

FO<YfN<YfES 

*NML, Irving, TX. 
tBecton-Dickinson, Orangeburg, NY. 
*Micromedic Inc., Horshaw, PA. 

APPENDIX A 
T4 Data 

The %B for the standards is calculated after background 
subtraction as percent of total. Other assays may use percent 
ofB0 • Standards are not replicated to keep the details simple. 

T4 
Concentration 

~g/dl) 

1 
2 
4 
8 

16 
32 

(%B) 

47.9 
44.9 
39.6 
31.3 
22.7 
14.8 
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APPENDIX B 
Logit-Log Fit 

The least squares straight line fit is made toY = logit (%B) 
versus X = log (C). Example calculations for the C = 4 stand­
ard (where %B = 39.6) are as follows: 

X = log (4) = 1.39 (where log is natural logarithm) 

Y = logit (39.6) = log [39.6/(100 - 39.6)] = -0.422 

X = log(C) 

0.0 
0.693 
1.39 
2.08 
2.77 
3.47 

Y = logit(%B) 

-0.0841 
-0.205 
-0.422 
-0.795 
-1.23 
-1.75 

Y = a0 + a1X by least squares (9) 

intercept 

slope 

correlation 

std. err. est. 

0.0937 

a1 = -0.485 

r 0.975 

SEE= 3.4 

Figure 1 shows the curve generated by these parameters. 
The SEE is unacceptably large. An example calculation of 
straight line prediction of concentration for %B = 39.6 (C 
= 4 standard) is as follows: 

logit%B = a0 + a1 log C, find C given %B = 39.6 

or 

C = exp [(logit%B - a0)/a1]; substitute a0 and a1 from above 

C = exp [( -0.422 - 0.0937)/ -0.485] 

C = exp [1.06] 

c = 2.9 jLg/dl 

All predicted standard concentrations are tabulated in Table 
1. The concentration for patients would be calculated in the 
same way. 

APPENDIX C 
Four-Parameter Logit-Log 

This formula finds a curve based on four parameters: 
BMIN, BMAX, a0 , a1• Note that BMIN and BMAX need not 
be measured in the assay. 

log [(%B - BMIN)/(BMAX - %B)] = a0 + a1 log (C) 

The computer generates the best fit parameters ( 6) as 
follows: 
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BMIN = 3.50 

BMAX = 51.0 

ao 2.65 

a1 - 1.10 

r 0.999 

SEE 0.4 

Figure 2 shows the curve generated by these parameters. Sam­
ple calculation of concentration predicted for the C = 4 stand­
ard, where %B = 39.6 (i.e., find C given %B = 39.6) is as 
follows: 

C = exp {[log((%B - BMIN)/(BMAX - %B)) - a0]/ai} 

C = exp {[log((39.6 - 3.5)/(51.0 - 39.6)) - 2.65]/ -1.1} 

C = exp {[log(3.17) - 2 .65]/- 1.1} 

C = exp {[1.15 - 2.65]/1.1} 

C = exp {1.36} 

c = 3. 9 jLg/dl 

Concentrations for other standards (Table 1) and patient data 
are calculated similarly. 

APPENDIXD 
Cubic Polynomial 

The formula for a curve based on four parameters a0-a3 is 
as follows: 

3 
%B = E a;(Co.s); 

i=O 

The computer generates the following best fit parameters: 

ao 55.89 

a1 - 6.708 

az - 1.191 

a3 0.1935 

r 0.999 

SEE 0.7 

Figure 3 shows the curve generated by these parameters. A 
sample calculation of the predicted concentration for the C 
= 4 standard, where %B = 39.6, is not detailed here. The 
calculation is detailed elsewhere (10), and is not generally at­
tempted by hand calculation because of the complex algebra. 
Basically, one must solve for X, the square root of C, in the 
equation: 

39.6 = 55.89 - 6.708 X -l.l9lX2 + 0.1935X3 

The solution X = 1. 962 satisfies this cubic equation so that: 
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or 

X 1. 962· = square root (C) 

c = (1.962) 2 

c = 3.9/-lg/dl 

In general, there are three values of X that satisfy the cubic 
equation. The software must eliminate imaginary values and 
choose a real value in the range of concentrations used in the 
assay. Table 1 shows the results for all the standards. 
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