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Abstract 

Objectives   Respiratory gating is used in positron emission tomography (PET) to prevent image quality 

degradation due to respiratory effects. In this study, we evaluated a data-driven respiratory gating for 

continuous bed motion OncoFreeze AI, which was implemented to improve image quality and accuracy 

of semiquantitative uptake values affected by respiratory motion. 

Methods   18F-fluoro-deoxyglucose PET/ computed tomography was performed on 32 patients with 

lung lesions. Two types of respiratory gating images (OncoFreeze AI with data-driven respiratory gating, 

device-based amplitude-based OncoFreeze with elastic motion compensation) and ungated images (Static) 

were reconstructed. For each image, we calculated standardized uptake value (SUV) and metabolic tumor 

volume (MTV). The improvement rate (IR) from respiratory gating and the contrast-to-noise ratio (CNR), 

which indicates the improvement in image noise, were also calculated for these indices. IR was also 

calculated for the upper and lower lobes of the lung. As OncoFreeze AI assumes the presence of respiratory 

motion, we examined quantitativity in regions where respiratory motion was not present using a 68Ge 

cylinder phantom with known quantitativity.  

Results   OncoFreeze and OncoFreeze AI showed similar values, with a significant increase in SUV and 

decrease in MTV compared to Static. OncoFreeze and OncoFreeze AI also showed similar values for IR 

and CNR. OncoFreeze AI increased SUVmax by an average of 18% and decreased MTV by an average 

of 25% compared to Static. From the IR results, both OncoFreeze and OncoFreeze AI showed a greater 



 

improvement rate from Static in the lower lobe than in the upper lobe.  

OncoFreeze and OncoFreeze AI increased CNR by 17.9% and 18.0%, respectively, compared to Static. 

The quantitativity of the 68Ge phantom, assuming a region of no respiratory motion, was almost equal for 

the Static and OncoFreeze AI.  

Conclusions   OncoFreeze AI improved the influence of respiratory motion in the assessment of lung 

lesion accumulation to a comparable level to the previously launched OncoFreeze. OncoFreeze AI 

provides more accurate imaging with significantly larger SUV values and smaller MTV than Static. 
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Introduction 

18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is useful 

in the stage, restage and assess treatment response of lung cancer (1, 2). Respiration affects the evaluation 

of lung lesions, which extends to blurred images, standardized uptake value (SUV), and metabolic tumor 

volume (MTV) (3–6). It has been reported that the respiratory motion of the lungs is greater in the lower 

lobe than in the upper lobe by a maximum of 6 to 12 cm (7, 8). As an imaging biomarker, SUV is highly 

reproducible and ideal for monitoring tumor response to treatment in individual patients (9). But the 

reliability of FDG-PET as a treatment response assessment is compromised if these indices, which monitor 

tumor responsiveness in areas affected by respiratory motion and areas not affected by respiratory motion, 

cannot be evaluated equivalently. 

To solve these problems, a respiratory gating scan method has been developed to detect breathing motion 

using a device (10, 11). This captures respiration as a waveform and detects the expiratory phase to get a 

low motion image. However, as only the expiration phase is used from the collected data, the scan time is 

extended. A mechanism was proposed that combined amplitude-based PET gating with elastic motion 

correction for comprehensive respiratory management (12). Based on the spectral analysis method (SAM) 

developed for single-bed position PET imaging, respiratory gate imaging can be performed with device-

less waveforms that derive waveforms directly from PET list mode raw data (13, 14). Several different 

approaches at deviceless waveform generation for PET have been robustly demonstrated on single-bed-



 

position PET (14–16). The deviceless waveform in the multi-bed position was first realized by step-and-

shoot collection (17). 

OncoFreeze is a respiratory gating software that combines continuous bed motion (CBM) and device-

based amplitude-based PET gating with elastic motion compensation (12). OncoFreeze AI, a data-driven 

device-less respiratory gating system (DDG) by CBM systems, was later created (18, 19). The purpose of 

this study was to verify the usefulness of OncoFreeze AI and OncoFreeze in lung lesions. 

 

 

Materials and methods 

The Institutional Review Board and Ethics Committee of Kyoto Prefectural University of Medicine, Japan 

(ERB-C-2578) approved this retrospective study and the requirement to obtain informed consent was 

waived. Thirty-eight lesions in 32 lung cancer patients who underwent 18F-FDG respiratory gated PET/CT 

between January 2022 and May 2022 were included. Thirty-eight lesions were included, consisting of 18 

in the upper lobe, five in the middle lobe, and 15 in the lower lobe. The mean age of the patients was 73.7 

years (50-93), 20 males and 12 women, body mass index was 22.28 ± 3.62, and the dose of FDG was 

202.28 ± 25.79 MBq (3.61 ± 0.65 MBq/Kg). PET/CT examination was performed as follows. Prior to 

FDG injection, the patients fasted for > 4 h, and their blood glucose levels were below 200 mg/dl. Each 

patient received FDG using an automatic injection system (Auto Dispensing Injector UG-05, Universal 



 

Giken Co. Ltd., Odawara, Japan). PET/CT imaging was performed at 60 min after FDG injection using a 

PET/CT system (Biograph Horizon 4R, Siemens Medical Solutions, Knoxville, TN, USA). FDG-PET 

imaging was performed using CBM at varying speeds (1.5 mm/s from the head to the pelvis, and 3.5 mm/s 

for the lower limbs). During examination, the belt gating (BG) system AZ-733VI (Anzai Medical, Co. 

Ltd, Tokyo, Japan) recorded respiratory signals that were used for gating. PET images were reconstructed 

using a three-dimensional ordered subset expectation maximization coupled with point–spread–function 

and time–of–flight algorithms. The following clinical parameters were set: four iterations, 10 subsets, 5-

mm (FWHM) post-reconstruction Gaussian filter, and 180 × 180-pixel matrix (pixel size = 4 mm). Low-

dose CT scan was acquired for PET attenuation correction, anatomical information, and image fusion with 

the following scanning parameters: tube voltage, 130 kV; quality reference mAs, 90; rotation time, 0.6 s; 

pitch, 1.5; slice thickness, 2.0 mm; transaxial field of view, 700 mm; and matrix size, 512 × 512. In the 

chest, respiratory gating reconstruction and static reconstruction (Static) were performed. Respiratory 

gating reconstruction was performed with device-less OncoFreeze AI and device-based OncoFreeze. 

OncoFreeze is a new respiratory gating function based on HD-Chest technology that does not require an 

increase in imaging time. OncoFreeze uses mass preserving optical flow to generalize respiratory motion 

and reconstructs the image using all count data from the HD-Chest image as a reference. OncoFreeze AI 

is a device-less respiratory gating method that extracts respiratory waveforms for each patient from 

continuous PET data using Flow Motion, and reconstructs respiratory gating images based on those 



 

respiratory waveforms. OncoFreeze AI uses DDG to estimate the respiratory waveform in a device-less 

manner using the following procedure based on the features of DDG and Flow Motion. Estimate the 

respiratory waveform using the change in the Anterior-Posterior direction from the PET data collected by 

Flow Motion (Resp Curve A). The PET data is divided into 500 msec volumes. Fourier transform the PET 

data with respect to time. Fourier transform Resp Curve A to determine the conditions (frequency and 

range) to be used in the SAM. Calculate each PET data in the SAM and create a mask for each voxel to 

compensate for the effect of respiration. Apply the mask to the temporally segmented volume data to 

generate a respiratory waveform (Resp Curve B). Normalize Resp Curve B. Compare Resp Curve A and 

B to create a waveform that matches the actual respiratory motion. This produces a device-less respiratory 

waveform and allows for respiratory-gated image reconstruction (18, 19).  

OncoFreeze AI and OncoFreeze are software that is equipped on the Biograph Horizon 4R (19). 

For each reconstruction algorithm, SUVmax, SUVpeak, and MTV were measured; the threshold for MTV 

was set at 40% SUVmax. SUVs were calculated using body weight. MTV unit is cm3. 

The improvement rate (IR) over Static with respiratory gating was calculated for SUVmax, SUVpeak, and 

MTV.  

The IR (IRSmax) of SUVmax for OncoFreeze AI was calculated using the following formula.  

IRSmax (%) = 
( OncoFreeze AI－Static)

Static
  ×   100 .     Eq. 1 

The same formula was also used to calculate IR (IRSpeak) of SUVpeak, IR (IRMTV) of MTV. And 



 

OncoFreeze was calculated in the same way.  

Contrast-to-noise ratio (CNR) was calculated using Equation 2. 

SUV SD (a surrogate for image noise) was measured using a 3-cm-diameter spheric region of interest in 

the lung that we assessed to be free of disease. CNR for each sphere was also calculated according to 

Equation 2 using the lesion SUVmax (SUVmax, le), background sphere SUVmax (SUVmax, bs), and 

background sphere SUV SD (sd).  

CNR = 
(SUVmax,le －SUVmax,bs)

sd
  .     Eq. 2 

 

The respiratory rate of the DDG-generated waveform was compared to the respiratory rate accepted 

by the waveform device. The accepted respiratory rate is recorded on the PET device. 

68Ge cylinder phantom CS-27 with a volume of 8407 mL, radius of 10 cm, and radioactivity of 

73.01 MBq, 8.68kBq/mL (Siemens Medical Solutions, Knoxville, TN, USA) was used to examine the 

quantitative accuracy in those areas where OncoFreeze AI was applied that were largely unaffected by 

respiratory motion. PET data were acquired at bed speeds of 0.6–3.0 mm/s (0.3 mm/s increments). A large 

volume of interest (VOI) was constructed in the center to avoid partial volume and edge effects, and the 

mean, maximum, and standard deviation (SD) of SUV and radioactivity (Bq/mL) were calculated. These 

indices were determined by using syngo.via (Siemens Medical Solutions, Knoxville, TN, USA).  

All statistical analyses were performed with EZR (Saitama Medical Center, Jichi Medical University, 



 

Saitama, Japan), which is a graphical user interface for R (The R Foundation for statistical Computing, 

Vienna, Austria) designed to add statistical functions frequently used in biostatistics (20).  

The significance of SUVmax, SUVpeak, MTV, and CNR were determined by Wilcoxon signed-rank test 

and Bonferroni adjustment, and IRSmax, IRSpeak, and IRMTV were determined by Mann-Whitney U 

test, and the waveform respiration rate were determined by paired t-test.  

 

 

Results 

SUVmax, SUVpeak, and MTV calculated by OncoFreeze AI were almost the same as OncoFreeze. 

Compared to Static, SUVmax and SUVpeak showed an increase and MTV showed a decrease (Figs. 1–

3). SUVmax for Static, OncoFreeze, and OncoFreeze AI was 7.08 ± 1.11, 8.40 ± 1.28, and 8.39 ± 1.31, 

respectively; SUVpeak was 5.18 ± 0.86, 5.67 ± 0.93, and 5.70 ± 0.95, respectively; MTV was 10.73 ± 

1.96, 8.31 ± 1.56, and 8.05 ± 1.51, respectively (mean ± standard error). SUVmax, SUVpeak, and MTV 

of OncoFreeze AI and OncoFreeze showed good correlation (Fig. 4).  

IRSmax, which represents the improvement in SUVmax, was 18.3 ± 2.6% (mean ± standard error) for 

OncoFreeze and 17.9 ± 2.2% for OncoFreeze AI. IRSpeak was 9.7 ± 1.3% for OncoFreeze and 9.6 ± 1.3% 

for OncoFreeze AI. IRMTV was -24.2 ± 3.2% for OncoFreeze and -25.5 ± 2.9% for OncoFreeze AI. 

IRSmax in the upper and lower lobes was 12.0 ± 2.2% and 26.7 ± 5.2% for OncoFreeze and 13.9 ± 2.2% 



 

and 23.8 ± 4.3% for OncoFreeze AI. IRSpeak in the upper and lower lobes was 7.5 ± 1.0% and 13.3 ± 

2.9% for OncoFreeze and 7.4 ± 1.1% and 12.9 ± 2.7% for OncoFreeze AI, respectively. IRMTV in the 

upper and lower lobes was -17.2 ± 3.9% and -33.7 ± 5.7% for OncoFreeze and -22.1 ± 3.8% and -32.1 ± 

5.2% for OncoFreeze AI, respectively (Figs. 5, 6). Only the IRSmax of OncoFreeze showed a significant 

difference between the upper and lower lobes (P = 0.0273); otherwise, there were no significant 

differences between the upper and lower lobes for both OncoFreeze and OncoFreeze AI.  

CNR was significantly higher for OncoFreeze and OncoFreeze AI compared to Static (Fig. 7). The 

percentage increases for CNR in comparison to Static for OncoFreeze, OncoFreeze AI were 17.9% and 

18.0%, respectively. In OncoFreeze AI and OncoFreeze, the number of breaths in the generated waveform 

is expressed in units of counts. This represents the number of breaths. The respiratory rate of the DDG-

generated waveform (OncoFreeze AI) was 223.7 ± 31.2 counts (mean ± standard error) and the respiratory 

rate accepted by the waveform device (OncoFreeze) was 218.0 ± 52.5 counts, and no significant 

differences were found (p=0.602). The correlation of the accepted respiratory rate was y=1.31x-76.57 with 

correlation coefficient R2 = 0.61 (x: OncoFreeze AI, y: OncoFreeze). 

The effect of OncoFreeze AI on quantitative accuracy was examined using a 68Ge cylinder phantom, 

assuming a region of unchanged counts, and the mean SUV of VOI was 1.04 for both Static and 

OncoFreeze AI, regardless of bed speed. On the other hand, SUVmax for both Static and OncoFreeze AI 

increased slightly with increasing bed speed. SUVmax was slightly higher for OncoFreeze AI than for 



 

Static. The SUVmax of OncoFreeze AI, when the SUVmax of Static was set to 1, averaged 1.05 ± 0.02, 

showing little deviation from the increase in SUVmax of Static with increasing bed speed. The 

radioactivity at the acquisition date, calculated from the radioactivity at the assay date, was 8.68 (kBq/mL), 

and the mean radioactivity of Static and OncoFreeze AI was 9.06 ± 0.01 (kBq/mL) and 9.02 ± 0.02 

(kBq/mL) (Table 1).  

 

Discussion 

We compared OncoFreeze AI, a device-less respiratory gating system of continuous bed motion imaging 

with OncoFreeze, which uses devices, on the Biograph Horizon, a commercially available general-purpose 

PET/CT machine. OncoFreeze AI is a reconstruction method that combines CBM and DDG. Reports so 

far have not investigated popular PET/CT systems and instead have focused on the high-end Biograph 

mCT and semiconductor PET, Biograph Vision (18, 21). In this study, we found that the OncoFreeze AI 

on the Biograph Horizon had the same SUVmax, SUVpeak, and MTV in lung lesions as OncoFreeze (Fig. 

4).  

Respiratory motion is greater in the lower lobe than in the upper lobe (4). Based on IRSmax, IRSpeak, 

and IRMTV, there was a trend toward greater correction effect of respiratory motion in the lower lobe than 

in the upper lobe. However, there was no significant difference in the correction effect between the upper 

and lower lobes, except for IRSmax in OncoFreeze (P = 0.0273) (Figs. 5, 6). Robin et al. reported a greater 



 

increase in SUV and decrease in MTV in the lower lobe than in the upper lobe due to the correction effect 

of respiratory motion in amplitude-based respiratory gate HD・Chest® imaging (6). In the present study, 

the same trend was observed for both OncoFreeze, which combines CBM with elastic motion 

compensation and device-based amplitude-based PET gating, and OncoFreeze AI, which combines a 

CBM system with a DDG system.  

Meier et al. used CNR as a metric to capture both SUVmax and noise. Their study reported a decrease 

in CNR with correction methodologies that use decreasing amounts of PET data; however, in lung lesions, 

the elastic motion deblurring algorithm improved the CNR of the lesion by 17.8% with the least increase 

in image noise (22). In the present study, OncoFreeze and OncoFreeze AI, which did not involve a decrease 

in PET data, showed a significant increase in CNR (17.9% and 18.0%, respectively). The fact that the 

respiratory rate generated by OncoFreeze AI, which generates respiratory waveforms without a device, 

was not significantly different from the respiratory rate measured by the device also indicates the 

usefulness of OncoFreeze AI. 

OncoFreeze AI, a development of OncoFreeze, is a device-less method; thus, the waveforms 

generated are completely dependent on the acquired PET data. To extract respiratory signals, respiratory 

motion must be present in the PET data (19). Therefore, we verified the accuracy of quantification in a 

region where no respiratory motion was assumed using a 68Ge cylinder phantom, and we found that 

SUVmean and quantification accuracy were comparable to Static. SUVmax was slightly higher for 



 

OncoFreeze AI than for Static, but the change in SUVmax with increasing bed speed was the same for 

Static and OncoFreeze AI (Table 1). These results indicate that OncoFreeze AI improved the effects of 

respiratory motion without compromising quantitative accuracy in the absence of respiratory motion. 

There are some limitations to our study. Though the image quality and other semiquantitative parameters 

improve, its clinical impact on patient management needs further evaluation. The present technique not 

only improves detection of lung lesions but may also improve detection of subdiaphragmatic hepatic 

lesions which is a potential additional advantage but not studied in the present study. 

One of the features of PET/CT with CBM mechanism, such as Biograph Horizon, is the whole-body 

dynamic imaging function. At present, dynamic images from whole-body dynamic imaging cannot be 

combined with OncoFreeze AI; however, when this is realized, it will be useful (23–27). OncoFreeze AI 

eliminates the need to attach the device to the patient, which leads to shorter exam times for the patient 

and reduced radiation exposure for the operator. Respiratory gating reconstruction that takes into account 

the effects of respiratory motion is expected to make a significant contribution to SUV and harmonization, 

which are widely used in clinical studies of lung cancer (28, 29). This study demonstrates the usefulness 

of OncoFreeze AI, which enables device-less correction of respiratory motion effects on the Biograph 

Horizon, a popular PET/CT system.  

  



 

Conclusions 

OncoFreeze AI, which does not require a device, can calculate SUV values and metabolic volumes 

comparable to OncoFreeze, which uses a device to measure respiratory motion. 

OncoFreeze AI provides more accurate lung lesion images with significantly larger SUV values and 

smaller metabolic volumes compared to Static. 
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KEY POINT 

QUESTION: Is a commercialized data-driven device-less respiratory gating application useful for 

evaluating lung lesion accumulation in continuous bed motion FDG-PET? 

PERTINENT FINDINGS: Data-driven respiratory gating was performed in 38 lung lesions in a 

continuous bed motion FDG-PET study and showed a significant increase in SUV and decrease in MTV 

compared to not gating. Although data-driven, deviceless respiratory gating reconstruction assumes the 

presence of respiratory motion, the phantom test results did not impair the quantification of regions where 

respiratory motion was absent. 

IMPLICATIONS FOR PATIENT CARE: Data-driven device-less respiratory gating reconstruction for 

evaluation of lung lesions in continuous bed motion FDG-PET can properly evaluate FDG accumulation. 
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Figure 1: (A) SUVmax and SUVpeak and (B) MTV for Static, OncoFreeze and OncoFreeze AI. 

        * P＜0.001 for Static 

  



 

 

Figure 2: A 64-year-old male with left upper lobe lung cancer; 175.8cm, 76.0kg, 18F-FDG dose 

2.99MBq/kg. PET images, transverse. SUVmax, SUVpeak, and MTV. 

         a Static, b OncoFreeze, c OncoFreeze AI 

  



 

 

Figure 3: A 77-year-old female with right lower lobe lung cancer; 153.5cm, 56.7kg, 18F-FDG dose 

3.26MBq/kg. PET images, transverse. SUVmax, SUVpeak, and MTV. 

         a Static, b OncoFreeze, c OncoFreeze AI 

  



 

 

Figure 4: Correlation of OncoFreeze and OncoFreeze AI for SUVmax(A), SUVpeak(B)  

and MTV(C) 

  



 

 

Figure 5: The ratios of SUVmax (IRSmax) from Static to OncoFreeze and OncoFreeze AI for 18 upper 

lobe and 15 lower lobe lesions.       *  P＝0.0273 

  



 

 

Figure 6: The ratios of MTV (IRMTV) from Static to OncoFreeze and OncoFreeze AI for 18  

upper lobe and 15 lower lobe lesions. 

  



 

 

Figure 7: Static and OncoFreeze and OncoFreeze AI in contrast-to-noise ratio (CNR).       

* P＜0.001 for Static 

  



 

Table 1   Relationship between bed motion speed, radioactivity concentration, and SUV in a 68Ge cylinder phantom 

 Activity (kBq/mL) SUV (mean) SUV (sd) SUV (max) 

Bed speed (mm/s) Static OncoFreeze AI Static OncoFreeze AI Static OncoFreeze AI Static OncoFreeze AI 

0.6 9.05 9.03 1.04 1.04 0.04 0.04 1.22 1.28 

0.9 9.06 9.02 1.04 1.04 0.05 0.06 1.25 1.33 

1.2 9.05 9.02 1.04 1.04 0.05 0.06 1.31 1.39 

1.5 9.07 9.04 1.04 1.04 0.06 0.07 1.34 1.38 

1.8 9.06 9.02 1.04 1.04 0.07 0.08 1.44 1.50 

2.1 9.08 9.04 1.05 1.04 0.07 0.09 1.44 1.50 

2.4 9.06 9.00 1.04 1.04 0.08 0.10 1.42 1.55 

2.7 9.07 9.01 1.04 1.04 0.08 0.10 1.47 1.52 

3.0 9.07 8.99 1.04 1.04 0.09 0.10 1.43 1.59 
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