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ABSTRACT 

Compartmental modeling of dynamic PET data enables quantification of tracer kinetics in vivo, through 

the calculated model parameters. In this study the aim was to investigate the effect of early frame sampling 

and reconstruction method on pharmacokinetic parameters obtained from a 2-tissue model, in terms of bias 

and uncertainty (standard deviation, SD).  

Methods: The GATE Monte Carlo software was used to simulate 2×15 dynamic 18F-FLT brain PET 

studies, typical in terms of noise level and kinetic parameters. The data was reconstructed by both three-

dimensional (3D) filtered back-projection with reprojection (3DRP) and 3D ordered subset expectation 

maximization (OSEM) into six dynamic image sets with different early frame durations of 1, 2, 4, 6, 10 

and 15 s. Bias and SD were evaluated for fitted parameter estimates, calculated from region-of-interests.  

Results: The 2-tissue model parameter estimates K1, k2, and Va depended on early frame sampling, and a 

sampling of 6-15 s generally minimized bias and SD. The shortest sampling of 1 s yielded a 25% and 42% 

larger bias compared to the other schemes, for 3DRP and OSEM respectively, and a parameter uncertainty 

that was 10-70% higher. The schemes from 4 to 15 s were generally not significantly different in regards 

to bias and SD. Typically, the reconstruction method 3DRP yielded less frame sampling dependence and 

less uncertain results compared to OSEM, but was on average more biased. 

Conclusion: Of the six sampling schemes investigated in this study, an early frame duration of 6-15 s 

generally kept both bias and uncertainty to a minimum, for both 3DRP and OSEM reconstructions. Very 

short frames of 1 s should be avoided since they typically resulted in the largest parameter bias and 

uncertainty. Furthermore, 3DRP may be preferred over OSEM for short frames with poor statistics.  
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INTRODUCTION 

Positron emission tomography (PET) is a widely used and powerful tool for the quantitative in vivo study 

of radiolabeled molecules (tracers). In quantitative PET imaging, it is important to understand and quantify 

random (uncertainty) and systematic (bias) errors that will affect the quantitative information within an 

image set. Although there have been many studies focused on the bias and uncertainty of model parameter 

estimates (1,2), the effect of the early frame duration on these quantities is less understood. 

Many early studies regarding optimal frame sampling schedules are mainly focused on the blood assay 

sampling for input function determination or reducing the computational time and storage space of 

dynamic image sets (3–6). Raylman et al. (7) studied protocols for dynamic cardiac imaging with different 

early frame samplings from 60 down to 5 s, and concluded that the first 100 s of the acquisition have to be 

sampled at 5 or 10 s for an acceptable bias in K1 and k2 for the 1-tissue compartment model. Jovkar et al. 

(8) investigated schemes with the first three minutes sampled at combinations of 10, 30 and 60 s, and 

found that parameter standard deviation (SD) decreased with decreased frame sampling (down to 10 s). 

These studies only included frame sampling intervals down to 10 s, or occasionally 5 s, however. 

Moreover, the studies employed calculated time-activity curves (TACs) and used either the theoretical 

TACs directly or, to resemble real clinical data, added noise according to a Poisson or Gaussian 

distribution. Although the noise in projection data (sinograms) is Poisson distributed, the distribution is 

usually much more complex after the reconstruction process, especially for nonlinear iterative 

reconstruction algorithms (9,10). In order to avoid making assumptions and simplifications regarding the 

camera system blurring effect and noise distribution on the PET image level, a more sophisticated 

simulation method is needed. By using Monte Carlo (MC) techniques one can obtain images with realistic 

noise distributions and proper camera system effects.  

The 18F-labeled molecule 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) is the most commonly used PET 

tracer in general and for tumor imaging in particular (11). Other tracers however, such as 3’deoxy-3’-

(18F)fluorothymidine (18F-FLT), have proven successful alternatives to 18F-FDG for brain tumor studies 
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(11–14). This work focused on the tracer 18F-FLT, which can be used to image tumor proliferation (11–

14).  

In dynamic PET, the tracer distribution over time is observed. The collected projection data are sorted 

into frames from which the kinetics of the tracer in a tissue or organ of interest can be quantified. 

Commonly, the dynamic data are analyzed using a tracer-specific compartment model, yielding a set of 

model-determined parameters representing the tracer kinetics. For dynamic PET imaging, list-mode data 

can be collected and binned to arbitrary frame durations. When reconstructing the data into a dynamic 

image set, the user is faced with the choice of using longer frames with better counting statistics but poor 

temporal resolution, or shorter frames with poor counting statistics but better temporal resolution.  

Short frames may be of interest during the first minutes of the dynamic PET study to better capture the 

fast variations in the tracer uptake and clearance, which are usually largest for early frames, and for a 

better definition of the early blood peak (6). This is especially true for image-derived time-activity curves 

(TACs) of the blood, since they are sharper than the TACs of the tissue, and thus require higher sampling 

rates (7). Clinical PET frames are often sampled at intervals ranging from 10 s to 300 s, although frames 

shorter than 5 s exist but are rare. Although short frames are often desired in dynamic PET imaging, they 

are seldom used due to the poor statistics associated with short frames and poor quality and bias of image 

reconstructions of such frames (6). 

The aim of this study was to investigate the effects different sampling schemes (frame durations) for 

early frames have on pharmacokinetic parameter estimates in regards to bias and SD for typical dynamic 

18F-FLT brain studies with typical dose administrations (noise level). The aim was also to investigate the 

effect of the reconstruction method used for the dynamic PET data by comparing the results for analytical 

three-dimensional (3D) filtered back-projection with reprojection (3DRP) and 3D ordered-subset 

expectation maximization (OSEM). To obtain data, the MC software GATE was used to simulate 2×15 

separate dynamic PET studies with a digital head phantom with added tumors, representing 18F-FLT with 

realistic kinetic parameter values. 
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MATERIALS AND METHODS 

Compartment model 

The 2-tissue compartment model seen in Fig.1 is commonly used to describe 18F-FLT (15). The TAC 

describing the activity concentration in arterial blood is known as the input function Cp, and the two TACs 

describing the tissue concentrations CF+NS and CS represent free plus nonspecific (nondisplaceable) and 

specifically bound tracer in tissue, respectively. The model parameters that govern the tracer exchange are: 

the uptake rate from blood to nondisplaceable tracer in tissue K1 (ml cm-3 min-1), the clearance rate from 

nondisplaceable tracer in tissue k2 (min-1) and the rates between the nondisplaceable and specifically bound 

tracer tissue compartments k3 (min-1) and k4 (min-1), respectively. Va (ml cm-3) is the fraction of arterial 

blood in tissue. The influx rate constant Ki (ml cm-3 min-1) is commonly used when evaluating dynamic 

data, and is defined as (8,12,15): = .     (1) 

The activity measured by the PET camera is the sum of CF+NS and CS, plus an added blood component 

to account for signal contamination from blood vessels within the voxel or a volume-of-interest (VOI) 

(8,16,17). 

 

Monte Carlo simulation 

GATE (18) was used to perform MC simulations of 3D dynamic PET 18F-FLT brain scans. The camera 

simulated was a previously validated GE Discovery LS PET scanner (19), consisting of 18 detection rings 

with 672 bismuth germanate (BGO) crystals of approximate size 4×8×30 mm each. The transaxial field-

of-view was 550 mm and the axial field-of-view 152 mm. 

The phantom used in the simulations was the voxelized digital BrainWeb head phantom (20). The 

phantom was simulated and described in a previous study (21), and is briefly described here. The phantom 

consisted of seven main materials, with seven uniform spherical tumors (diameters 3, 6, 9, 12, 18, 24, and 

30 mm) distributed in each hemisphere (14 inserted tumors). Finally, a 25 mm spherical blood region was 
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placed centrally in the brain. The constructed phantom had an isotropic voxel size of 1×1×1 mm, and is 

depicted in Fig. 2. The size, shape, and location of the blood region was designed to be practical for 

extraction of an image-derived input function of small variance and little influence of partial volume 

effects, rather than to be realistic. Furthermore, inclusion of a blood region within the phantom eliminated 

the need for additional simulations (of e.g. the heart) for input-function derivation. 

Realistic pharmacokinetics was assigned to all normal phantom tissues, and fitted TACs from two 

clinical dynamic brain FLT scans performed at Umeå University Hospital were used for those regions. The 

same input function Cp was assigned to the blood region in both setups, denoted FLT1 and FLT2. Cp was 

generated using Matlab (v. 8.1.0, The MathWorks Inc., MA, USA), and had a typical input function 

appearance (22) with a realistic peak amplitude of around 50 kBq/cc (measured at Umeå University 

Hospital). For each of the two setups, Matlab was used to generate the corresponding TTAC CPET, 

according to the 2-tissue model with the realistic 18F-FLT parameter values for gliomas, seen in Table 1 

(12,13). For both FLT1 and FLT2, all 14 tumor regions were assigned the same TTAC CPET. The simulated 

blood and tumor TACs are seen in Fig. 3. The source particles simulated were 18F positrons with an 

electron range production cut of 2 mm, a δ-ray production cut of 10 keV, and an x-ray production cut of 

10 keV (19,23). Physical decay of the sources was applied with a half-life of 6586.2 s. The activities in the 

tissue- and blood regions of the phantom were read from the generated TACs and updated every second of 

the simulation. For practical reasons the detector dead time was not included in the simulation. The total 

GATE acquisition time was set to 60 min and simulated data were stored in list-mode. A total of 30 MC 

simulations were performed; 15 of the setup with FLT1 and 15 with FLT2, in order to improve the statistics 

for the kinetic parameter analyses. Although simulated, the random coincidences were not included in the 

study. The effect of random coincidences was considered small as the random fraction for the two setups 

was merely 2%. 

As previously described in (21), data from one normalization and one calibration simulation were also 

used for the image reconstruction normalization and quantitative calibration. 
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All simulations were performed using the computer cluster Akka (Intel Xeon quad-core L5420 central 

processing units) at the HPC2N collaboration, Umeå University. Each of the 30 dynamic simulations 

required a total of about 3300 central processing unit hours. 

 

Image reconstruction 

The list-mode true+scattered coincidences were binned into 3D sinograms (19) and reconstructed using 

two methods: Analytical 3DRP (24) and OSEM (25) iterative reconstruction. The reconstructions were 

performed using the software STIR (26). A Colsher filter (cut-off frequency 0.5 pixel-1) was applied for 

3DRP and the OSEM settings were chosen so that the tumor VOI values had reached convergence at 60 

subiterations and 12 subsets (5 iterations). Both methods had normalization, decay, attenuation, and scatter 

corrections applied.  

For the attenuation correction, a linear attenuation coefficient data map (μ-map) relevant for 511 keV 

photons for the respective phantom materials was generated from the BrainWeb phantom. The 

normalization simulation data were binned into a sinogram to create the normalization sinogram (27). A 

scatter sinogram estimate was created from the single scatter simulation (SSS) algorithm implemented in 

STIR (28,29), and used as additive sinograms in the OSEM loop. Attenuation and normalization data were 

also included in the loop, whereas all three corrections were used as pre-corrections for 3DRP. 

 In accordance with clinical settings of the GE Discovery LS, all reconstructed images were post-

filtered with a 6.0 mm FWHM Gaussian transverse filter and a 3-point smoothing filter [1 2 1] /4 in the 

axial direction. Reconstructed image sizes were 165×165×35 voxels with a voxel size of 2×2×4.25 mm. 

Finally, a scale factor to calibrate all images from counts to Bq/ml was created from a 3DRP 

reconstruction of the true coincidences from the calibration simulation. 

The dynamic PET data were reconstructed into six dynamic image sets, with the first two minutes 

(covering the early blood peak) sampled at 120×1 s, 60×2 s, 30×4 s, 20×6 s, 12×10 s, or 8×15 s. The PET 

data between 2 and 60 min were all sampled at 2×30 s, 2×60 s, 2×150 s, and 10×300 s. 
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Model fitting and parameter analysis 

The input function was image-derived from a spherical VOI covering the complete blood region (25 mm 

diameter, 488 voxels, 8.3 ml), and two tumor TTACs from each simulation were derived from complete 

VOIs of the largest left and right tumors, respectively (30 mm diameter, 843 voxels, 14.3 ml). In this 

study, only the two largest 30 mm tumors were used in order to minimize partial volume effects (the 

additional 12 tumor spheres are intended for another study). The data used for analysis thus comprised 15 

input functions and two TTACs per input function, making a total of 30 tumor TTACs for each of FLT1 

and FLT2, where the TAC values were calculated as the mean value of the VOI at each frame.  

Kinetic parameter estimates were obtained by nonlinear-least-squares (NLS) fitting of each of the 

TTACs with the input function considered a noiseless model input. The NLS fitting is commonly 

weighted, and each TTAC value should be weighted according to its inverse variance. Since the true 

variance is typically unknown, it is usually approximated by considering radioactive decay, frame duration 

and often also frame count. However, weighting according to noisy counts can degrade the parameter 

estimation severely (30,31). Furthermore, in order not to force a fit only to the last few TTAC values with 

long frame durations and in essence ignore the short early frames, a uniform weight was used for all 

frames in this study. The Matlab function lsqnonlin was used for the fitting, and the true values were 

used as start values to avoid any effects from the choice of initial parameter guesses. The midtime of each 

frame was used as the time point and the influx rate parameter Ki was calculated according to Eq. 1 for 

each VOI.  

The 30 sets of kinetic parameters were finally averaged into one single set of estimated [K1, k2, k3, k4, 

Va, Ki] for each of the six sampling schemes, for both FLT1 and FLT2. The relative bias of all six 

pharmacokinetic parameter estimates P was calculated as − × × 100 % ,    (2) 

where  is the true parameter value. The accompanying relative standard error in the bias was 

√ × × 100 % ,     (3) 
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where  is the SD of parameter estimate P. The relative SD in the parameter estimates was calculated 

according to × × 100 % .     (4) 

The theoretical, noiseless input functions and TTACs, resampled to match the six different frame 

sampling schemes, were also NLS fitted and compared to the results from the image-derived TACs. 

The obtained biases were analyzed with 1- and 2-way ANOVA tests, followed by post-hoc Bonferroni 

pairwise tests to make out individual differences between reconstruction methods and sampling schemes. 

Results with p<0.05 were considered significant. 

All data fitting and analyses were performed in Matlab. 

 

RESULTS 

On average, the total registered and kept coincidences from the 15 simulations was 119×106 and 137×106, 

for FLT1 and FLT2, respectively. The total kcounts per frame for the early frames (first 120 s) of the 

different sampling schemes are seen in Table 2. 

Examples of the reconstructed images are seen in Fig. 4, and representative TTACs from one of the 30 

FLT1 tumor VOIs, with corresponding NLS fit are seen in Fig. 5. As can be seen in both figures, the noise 

level of the images and subsequent TACs decreases as the frame duration increases. The calculated bias 

and SD of the parameter estimates from the NLS fits of the image-derived input function and TTAC are 

seen in Fig. 6, and the results for the resampled theoretical (noiseless) TACs (nonclinical case used merely 

for comparison) are seen in Fig. 7. 

The shortest early sampling of 1 s generally produced the most biased parameter estimates, and more so 

for OSEM compared to 3DRP reconstructions. On average, the 1 s parameter bias magnitudes were 25% 

and 43% larger than the other sampling schemes, for 3DRP and OSEM respectively. Due to parameter 

uncertainties however, the results were only significant for parameters K1, k2, and Va with OSEM (both 

FLT setups), K1 and k2 for FLT2 with 3DRP, and Va for both FLT setups with 3DRP. The 2 s scheme also 
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yielded significantly larger biases compared to the longer schemes for parameters K1 and k2 with OSEM. 

In general, the sampling schemes of 4, 6, 10 and 15 s did not differ significantly, with the exception of Va 

with 3DRP where most schemes differed from one another. From Fig. 7 (theoretical, noiseless TACs) it is 

apparent that Va is the parameter most dependent on frame sampling. 

On average, parameter k3 was the least biased estimate at 4% on average for all schemes, and 3% when 

excluding the 1 s scheme. Its bias from 2 to 15 s sampling was in fact not significantly different from the 

theoretical case at around 2%. 

The minimum bias magnitude was found between 6 and 15 s early frame sampling for both FLT setups 

for all six parameters, and both reconstruction methods. The minimum typically occurred at a shorter 

sampling of 6 s for 3DRP and about 15 s for OSEM. Note however that the schemes of 4, 6, 10 and 15 s 

were generally not significantly different. 

Parameter estimate uncertainties (SDs) were generally stable for an early frame sampling of 2 to 15 s, 

but increased by 10-70% when shortening it to 1 s. The uncertainty was smallest for parameter K1 with an 

average of 4%, and largest for k4 at 25%. 

Comparing the significant results of the two reconstruction methods, 3DRP produced more biased 

estimates of K1, k2, and Va compared to OSEM, by 44%, 92% and 314%, and a less biased k4 by 8%. 

Uncertainties however were larger for OSEM reconstructions by on average 15%. 

 

DISCUSSION 

In this study, we investigated the effect of early frame duration on bias and SD in pharmacokinetic 

parameter estimates obtained from the 2-tissue compartment model for typical 18F-FLT brain studies. 

Two sets of kinetic parameter value sets were chosen, representing the tracer 18F-FLT, but since the 

simulations themselves were parameter specific, not tracer specific, the results are likely valid for any 

tracer suited for the 2-tissue compartment model with similar pharmacokinetic parameter values and noise 

level (dose administration). Two image reconstructions methods were also studied, 3DRP and OSEM. 
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Of the statistically significant results, the bias was generally smallest for early frame durations of 6-

15 s. A frame sampling dependence was generally found for K1, k2,Va, and more so for OSEM than 3DRP. 

The closer statistical analysis revealed that it was the 1 s, and occasionally also the 2 s scheme that stood 

out from the rest. With 3DRP, it was only for the faster kinetics described by FLT2 that a frame sampling 

dependence was found for K1 and k2. The slower kinetics in FLT1 did not show a significant sampling 

dependence. These results are not surprising as faster kinetics should intuitively be more prone to 

undersampling than slower kinetics where the TACs do not vary as quickly from frame to frame. 

Parameter K1 mainly governs the amplitude of the TTAC, whereas k2, k3 and k4 together contribute to the 

shape of the TTAC. This makes predictions regarding individual parameter responses to changes in the 

TTAC shape difficult. Apart from the highest bias, the SDs were also highest for the shortest frames of 1 s. 

This is expected since the signal-to-noise ratio of the frames is roughly proportional to the square root of 

the number of counts.  

The bias for OSEM appeared to have a frame duration dependence which was more pronounced than 

for 3DRP, for parameters K1 and k2. It is known that iterative reconstruction (OSEM) of low-count images 

may result in (positively) biased images whilst analytical reconstruction methods (3DRP) do not (32,33). 

The bias introduced due to low count reconstruction may explain the larger bias for short frames, and 

hence more prominent frame duration dependence for OSEM compared to 3DRP. The parameter K1 which 

mainly controls the peak amplitude of the TTAC would thus be most affected by a biased ROI value. 

Compared to OSEM, 3DRP images have a high background noise and streak artifacts (Fig. 4). It should be 

noted however that the lowest count OSEM images (1 s and 2 s frames) appear to have artifacts in the 

form of high uptake spots. The effect of the low count bias for short framed OSEM images and how it 

transfers to the parameter biases and SDs is very hard to include properly in studies where the TACs are 

simulated directly with added noise profiles. This effect is a lot more realistically depicted using full MC 

simulations with complete image reconstructions. 

Furthermore, according to typical practice, the same setting (here 60 subiterations, 12 subsets) was used 

for all frame sampling schemes and for all frames of each scheme. However, because of the difference in 
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statistics between the different frames, they should ideally (despite practicality issues), have the OSEM 

reconstruction settings optimized individually. Furthermore, OSEM images have noisier hot regions than 

3DRP, and vice versa for cold regions, as known from literature (9,34). Cerebellum VOI (cold) SDs and 

tumor VOI (hot) SDs were on average 71% higher and 28% lower, respectively, when comparing 3DRP to 

OSEM. This fact, together with the low count bias may explain the 15% larger parameter uncertainties 

obtained for OSEM compared to 3DRP images. However, the noise level in OSEM images is heavily 

dependent on the number of iterations, and other reconstruction settings could yield slightly different 

results.  

It is apparent that Va is dependent on the frame duration. Even the theoretical TACs (Fig. 7) resulted in 

large biases for the longer sampling intervals. Since Va is determined by the early blood peak seen in the 

TTAC, a long frame duration will effectively lower the peak due to smearing and cause an underestimated 

Va. An input function with a wider peak would most likely decrease the frame sampling dependence and 

yield less bias in Va. On the other hand, a more narrow blood peak would likely cause Va to be more 

underestimated.  

Both k3 and Ki was found independent of early frame sampling. Even though Fig. 6 shows a larger bias 

for the shortest 1 s frame sampling, the results were not significant. These two parameters have been 

shown to be of potentially larger clinical value (13,14), so a small dependence on frame sampling scheme 

is desired. As Ki is a macro parameter calculated from three other parameters, it is likely to be more stable 

than single parameters (6). The image-derived k3 was not different from the theoretical noiseless case. 

Thus, the effects of the camera system blurring, reconstruction process etc. did not add additional bias to 

the estimate. This makes it reliable and strengthens its role as a clinically relevant parameter. 

The bias and SD of parameter k4 was large. A longer scan time (>60 min) would likely improve the k4 

estimation (15), but as this parameter is rarely considered clinically important due to large uncertainties,  

we chose not to take this into further consideration. Jovkar et al. (8) found that keeping k4 fixed in the 

fitting procedure resulted in more stable estimates of all other parameters. 
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According to our findings, noise and bias in the image-derived TACs can affect the parameter 

uncertainty and bias to a large extent. Since the input function is derived from only one ROI and assumed 

true for the fitting procedure, any bias in it will affect all parameter estimates. If the chosen blood ROI is 

not representative, the calculated bias and SD in the parameter estimates may be largely affected. To 

minimize uncertainty and bias the use of a population based input function might be helpful (22,35). It 

should be noted however that the population based input function is subject to interpatient variability and 

may be biased in itself. 

The parameter bias was found larger for 3DRP than OSEM, and the uncertainty smaller on average. As 

shown by Thiele et al. (31) and Yaqub et al. (30), the choice of weight factors for weighted NLS can affect 

the results to a relatively large extent. In addition to uniform weighting, the fitting and subsequent 

parameter analyses were also done with two standard weight estimations (31)  (data not shown). For the ith 

frame in each set, the two weights wi were calculated as: 

 1 = × ,     (5) 

and 2 = × ,     (6) 

where Fi is the frame duration, ti the frame midtime, λ the decay constant and TACi the TAC value of the 

ith frame. The results when including either of the weights were on average worse than with uniform 

weighting. We therefore chose not to present these results. Worth mentioning however is that although we 

found OSEM to produce less biased parameter estimates when using uniform weighting, when using either 

w1 or w2, 3DRP yielded considerably better estimates than OSEM. The bias for OSEM reconstructions 

benefited from uniform weighting, whereas 3DRP showed minimum bias for w1. 

The size of the tumor ROIs were set to 14.3 ml in this study, which is a realistic volume for a brain 

tumor ROI. The ROI size and the image noise level (activity) will affect the results since a larger ROI or 

higher activity yields better statistics. In this study the focus was to evaluate a typical 18F-FLT study and 

administered dose (noise level) and kinetic parameter values were chosen accordingly. For a more general 
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understanding of the parameter biases and uncertainties in relation to noise level and pharmacokinetics, a 

full range of different dose administrations and parameter value sets could be simulated and analyzed. 

Finally, when comparing FLT1 and FLT2, it is clear that the magnitudes of both bias and SD are often 

different, reflecting the difference in parameter reliability on the individual patient level as there is a wide 

range of clinically possible kinetic parameter values. 

 

CONCLUSION 

In general for this study, an early frame sampling of 6-15 s was found to minimize the overall bias in 

pharmacokinetic parameters for both 3DRP and OSEM reconstructions. Parameters K1, k2 and Va showed 

a statistically significant frame sampling dependence with the largest bias for the shortest frames of 1 s, 

and more so for OSEM compared to 3DRP. The parameter uncertainties were generally stable for frames 

of 2-15 s, but higher for the short 1 s sampling. 

The estimation of k3 was most reliable (bias <5% in general), and the parameter Va was overall most 

dependent on frame duration.  

Despite the visually more appealing OSEM images, the analytic image reconstruction method 3DRP 

showed less dependence on early frame sampling, compared to the iterative technique OSEM. Moreover, 

OSEM reconstructions of the shortest early frames (1 and 2 s) had artefacts in the form of high uptake 

spots, not seen in the 3DRP images. 
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FIGURE 2. The voxelized BrainWeb head phantom, with inserted spherical blood and tumor regions, 

labeled with their diameter in mm. All tissues were attributed realistic TACs, and the blood region was 

assigned the input function (Cp) and all 14 tumor regions the same TTAC (CPET). 
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FIGURE 7. Relative bias for all model parameters for the six different early frame sampling schemes, 

using the resampled theoretical (noiseless) input function and TTAC for the NLS fit. 
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TABLE 1. The two sets of simulated 18F-FLT parameter values; FLT1 (12) and FLT2 (13). 

 K1 k2 k3 k4 Va Ki
* 

FLT1 0.071 0.091 0.047 0.018 0.086 0.024

FLT2 0.111 0.131 0.017 0.012 0.122 0.013

* Values calculated by Eq. 1 
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TABLE 2. Total number of kcounts in the early frames (first 120 s of the acquisition) for the different 

sampling schemes. 

 1 s 2 s 4 s 6 s 10 s 15 s 

FLT1 0-44 0-87 0-173 3-258 125-429 282-642

FLT2 0-57 0-113 0-226 4-338 162-564 368-843

 


