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Iterative maximum-likelihood expectation maximization and
ordered-subset expectation maximization algorithms are excel-
lent for image reconstruction and usually provide better images
than filtered backprojection (FBP). Recently, an FBP algorithm
able to incorporate noise weighting during reconstruction was
developed. This paper compares the performance of the noise-
weighted FBP algorithm and the iterative maximum-likelihood
expectation maximization algorithm with Poisson noise–corrupted
emission data generated by computer simulations and a SPECT
experimental study. The results show comparable performance
for these 2 algorithms.
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Iterative maximum-likelihood expectation maximization
(MLEM) (or its ordered-subset version) is the most widely
used iterative image reconstruction algorithm in nuclear
medicine (1). Many studies have compared MLEM with
analytic filtered backprojection (FBP) (2–5). Except for
some parametric imaging studies, the output is usually con-
sidered much better for MLEM than for FBP (6,7). One
reason for the poor performance of FBP is that information
about projection noise is not used during reconstruction.
Many researchers have developed preprocessing methods

to denoise the projections before FBP is used for image
reconstruction. Recently, a noise-weighted FBP algorithm
was introduced (8,9), and this paper compares it with the
state-of-the-art MLEM algorithm using Poisson noise–
corrupted emission projections.
An expansion domain filtering method (10–12) effectively

preprocesses projections before an analytic algorithm is ap-

plied for image reconstruction. The preprocessing procedure
expands the projections into a set of, for example, Kharhunen–
Lohve basis functions. Each Kharhunen–Lohve basis function
is analogous to a sine wave, and each Kharhunen–Lohve
coefficient is analogous to the Fourier series coefficient or
frequency component. The optimum Kharhunen–Lohve do-
main filtering is analogous to the Fourier domain’s Wiener
filtering. The noise model is shift-invariant and frequency-
dependent. On the other hand, our proposed noise weighting
is projection ray–based, resulting in a shift-variant noise
model. The resultant reconstruction does not have a shift-
invariant property.

It is well understood that image evaluation and compar-
ison are always task-based and that there is no universal
criterion. Algorithm A can be better than algorithm B using
one criterion whereas algorithm B can be better than
algorithm A using another criterion. If the task is lesion
detection, an algorithm that can provide a smooth back-
ground and a high-contrast lesion wins (13). Some tasks
rely on image variance and bias trade-off (14), and others
rely on resolution and signal-to-noise trade-off.

In this paper, we adopt the criterion that the best image is
that closest to the true image in the sense of the pixel-by-pixel
least-squares error. Since the true image must be known in
order to use this criterion, only computer simulations are
applicable. It is impractical to use real data for the comparison
studies because the true image is unknown. However, we can
find a noise-weighted FBP reconstruction that is close to an
MLEM reconstruction.

Since the emission data MLEM algorithm is well known, the
next section describes only the noise-weighted FBP algorithm.

MATERIALS AND METHODS

Noise-Weighted FBP Algorithm
The noise-weighted FBP algorithm is almost the same as the

conventional FBP algorithm except that the ramp filter is regulated
by newly proposed window functions. The use of window functions
in an FBP algorithm is not new. One popular window function is the
rectangular function suggested by Ramachandran and Lakshminar-
ayanan (15). Another popular window is smoother than the rectan-
gular function and was proposed by Shepp and Logan (16). Many
other low-pass filters, such as the Hamming window (17), the Hann
window (which is the raised cosine function) (18), and the Butter-
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worth window (19), are also widely used. These traditional window
functions are shift-invariant. On the other hand, our proposed win-
dow function is determined by the noise variance of each projection
ray (8,9), as

WindowðvÞ 5 1 2

�
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wðrayÞ
jvj

�k

; if v 6¼ 0;

and Windowð0Þ 5 0;

Eq. 1

where v is the frequency variable, w(ray) is a weighting function
of the projection ray, and k is the parameter that emulates the
iteration number as if in an iterative algorithm. In Equation 1, a
. 0 is a small prechosen constant that emulates the step size in an
iterative algorithm. The main difference between Equation 1 and
the formula given by Zeng and Zamyatin (9) is that their formula is
more general and considers Bayesian regularization with a regulari-
zation parameter b. If b is set to zero, these 2 formulas are identical.

For emission data’s Poisson noise model, noise variance can be
approximated by the projection value, which is the photon count.
If the projection value along a ray is p, then the weighting function
w(ray) can be chosen as 1/p or a low-pass filtered version of 1/p. If
p 5 0, w(ray) can be chosen as 1.

Our strategy to implement the window function Equation 1 is to
quantitate the weighting function w(ray) into N (e.g., N 5 10)
values: 1=ð0:1 � n � pmaxÞ, where pmax is the maximum projection
value and n 5 1, 2,. . ., 10. The efficient fast Fourier transform is
used. The implementation steps of calculating filtered projection
q(t,u) are given below. Here, u is the view angle and t is the
projection bin coordinate along the detector in a parallel-beam
imaging geometry.

Before the projection data p(t,u) are ready to process, we form
10 Fourier domain filter transfer functions filternðvÞ as defined
in Equation 2:

FilternðvÞ 5 jvj �WindownðvÞ 5 jvj �
�
1 2
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;

Eq. 2

with wn 5 1=ð0:1 � n � pmaxÞ and n 5 1, 2,. . ., 10, respectively. In
implementation, v is a discrete frequency index and takes the
discrete values of 0, 1/M, 2/M,. . ., 1/2, where M is twice the pro-
jection array size. If the detector size is 128, then M is 256. When
v 5 0, we always define filtern(0) as 0.

The frequency domain transfer function Equation 2 can be
decomposed into the ramp filter jvj and a window function. For
the conventional FBP algorithm, the window function is a constant
1.½Fig: 1� For the noise-weighted FBP algorithm, the window functions
are various low-pass filters as shown in Figures 1–3½Fig: 2� . Figure 1
shows½Fig: 3� 10 different window functions, n 5 1, 2,..., 10, for k 5
6,000. Figure 2 shows 10 different window functions, n 5 1, 2,...,
10, for k 5 1,868. Figure 3 shows 5 different window functions
associated with n 5 5 and 5 different k values. The actual imple-
mentation steps of the modified ramp filtering are given below:

Step 1: At each view angle u, find the 1-dimensional Fourier
transform of p(t,u) with respect to t, obtaining P(v, u).

Step 2: Form 10 versions of Qn(v,u) 5 P(v, u) FilternðvÞ with
n 5 1,. . ., 10.

Step 3: Take the 1-dimensional inverse Fourier transform of
Qn(v, u) with respect to v, obtaining qn(t,u) with
n 5 1,. . ., 10.

Step 4: Construct q(t,u) by letting q(t,u) 5 qn(t,u) if
pðt; uÞ � 0:1 � n � pmax.

A better result can be obtained if p(t,u) in step 4 is replaced
by a low-pass smoothed version of p(t,u). In this paper, we use
a 3-point-avarage filter to smooth p(t,u) with respect to t and used
this smoothed p(t,u) in step 4 for the purpose of noise-weighting
reinstallation. In other words, the weighting function is defined by
the smoothed projections. The smoothed projections can be low-
pass–filtered heavily or lightly, with respect to one variable or all
variables, and they can also be normalized with a maximum value
of 1. This smoothed version of p(t,u) is never used in steps 1–3 for
projection data’s ramp filtering and is only used for the design
of a noise-weighting function.

In Equations 1 and 2, the parameter a should be chosen such that
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Eq. 3

We used a 5 0.001 for all our computer simulations and real
SPECT studies. If one chooses to normalize the smoothed projec-
tions in step 4 so that the maximum value is 1, then a can be
chosen as any positive value a, 0.2/M. As a matter of fact, in our
computer simulations, all projection data are first normalized to
a certain maximum value before they are used for image recon-
struction. This value is the maximum projection value with the
lowest count in a series of noisy phantom studies with the same
phantom.

Since the MLEM algorithm has a nonnegativity constraint
whereas the FBP algorithm does not have this constraint, after the
image is reconstructed with the noise-weighted FBP algorithm

FIGURE 1. Window functions (gain vs. frequency) for k 5
6,000 and n 5 1, 2,. . ., 10.
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all negative-valued pixels are set to zero to have a fair comparison.
In fact, there exist better ways to process the negative reconstruc-
tion values as suggested by O’Sullivan et al. (20).

Computer Simulations
In this paper, the Poisson noise–weighted FBP algorithm is

compared with the iterative MLEM algorithm by using computer
simulations. The 2 computer-generated phantoms used in the stud-
ies had the same shape and dimension, containing an elliptic torso,
the heart, a lung, and background tissues. The radioactivity ratios
of heart:background:lung:air were 2.5:1.0:0.25:0 for phantom
1 and 1.75:1.0:0.5:0 for phantom 2.

The projection data were calculated analytically as line
integrals of the phantoms (without pixelization of the phantom).
Poisson noise was added to the projections; 5 different noise levels
and 100 noise realizations for each noise level were used in the
simulation studies.

The 1-dimensional detector array contained 128 bins. No
scattering, attenuation, distance-dependent blurring, or motion
was considered in data generation and reconstruction. The detector
stopped at 120 views uniformly distributed over 180�. The images
were reconstructed into a 2-dimensional 128 · 128 array using
the MLEM algorithm and the noise-weighted FBP algorithm,
respectively.

No modification was made to the conventional MLEM algorithm
that models the emission Poisson noise. The number of iterations
was chosen when the reconstructed image was closest to the true
image, that is, when the pixel-by-pixel squared error

Squared error 5 +
k2all positive pixels

½reconstructionðkÞ 2 trueðkÞ�2

Eq. 4

reached a minimum. The mean squared error (MSE) is calculated
for each reconstruction. For each simulation condition, we have

100 noise realizations. The average of the 100 squared errors is
reported in the “Results” section as the MSE. In the noise-
weighted FBP algorithm, the parameter k was chosen in the same
manner, because it emulates the iteration number in an iterative
algorithm.

In addition to MSE, the bias and SD are also calculated. The
definition of the bias is almost the same as that in Equation 4,
except that the square is removed. The average of the 100 biases is
reported in the “Results” section. The variance is calculated as
variance 5 MSE 2 (bias)2, and the square root of the variance is
the SD.

Phantom Experiment
A Jaszczak torso/heart phantom was filled with 99mTc and

scanned with a Siemens Signature SPECT system. Radioactivities
in each organ/background (123 MBq [3.3 mCi] in the liver, 30
MBq [0.8 mCi] in the myocardium, and 93 MBq [2.5 mCi] in the
background) and scan time (30 min) were similar to those in
a routine clinical study. The data acquisition matrix was 128 ·
128, and the phantom was scanned using 60 views over 180�. The
images were reconstructed into a 128 · 128 array, using the
MLEM algorithm and the noise-weighted FBP algorithm, respec-
tively.

Three different numbers of iterations—3, 30, and 3,000—were
used in the MLEM reconstructions. The parameter k in the noise-
weighted FBP algorithm was chosen according to the minimum
of Equation 4, where the true image was replaced by an MLEM
reconstruction. In other words, a closest noise-weighted FBP
reconstruction was obtained to match the MLEM reconstruc-
tions.

RESULTS

In ½Fig: 4�Figure 4, the optimal MLEM images and the optimal
noise-weighted FBP images are compared for phantom 1.

FIGURE 3. Window functions (gain vs. frequency) for n 5 5
and 5 different k values.

FIGURE 2. Window functions (gain vs. frequency) for k 5
1,868 and n 5 1, 2,. . ., 10.
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The results for phantom 2 are summarized in½Fig: 5� Figure 5. By
optimal, we mean that the images reach the least-squares
difference from the true image, that is, the minimum MSE.
In Figure 4, phantom 1 results with the MLEM algorithm are
better than the noise-weighted FBP results for all noise lev-
els, whereas in Figure 5, phantom 2 results with the MLEM
algorithm are not as good as those noise-weighted FBP
results for all noise levels. The only difference between
phantoms 1 and 2 is the activity ratios for the organs. Phan-
tom 2 has less contrast than phantom 1. This phenomenon
suggests that these 2 algorithms exhibit comparable perfor-
mance. As also shown in Figures 4 and 5, when the noise-
weighted FBP algorithm is replaced by the conventional FBP
algorithm the performance is dramatically degraded, and this
observation implies that the noise weighting in FBP does
make a difference. The conventional FBP reconstruction
uses the ramp filter, and the window function is a constant
1. The bias-versus-SD curves for phantom studies 1 and 2 are
shown in½Fig: 6� Figures 6 and 7, respectively.
Finally, Figure 8½Fig: 7� presents the results of the experimental

SPECT study with the½Fig: 8� torso/heart phantom. Three MLEM
reconstructions and 3 corresponding noise-weighted FBP

reconstructions are compared. The images from both recon-
struction methods are similar, but the MLEM results seem
noisier and sharper.

All images are displayed from 0 to the maximum value
of each image with a linear gray scale.

DISCUSSION

In our proposed method, every projection ray is assigned
to a weighting factor according to its noise variance. This
noise weighting is relative from ray to ray and from view to
view in the sense that if all weighting factors are scaled by
a constant, the algorithm is essentially unchanged. This
relative noise weighting emphasizes less-noisy projection
rays while deemphasizing noisier rays. This ray-by-ray
weighting scheme is different from (i.e., not equivalent to)
the view-by-view weighting scheme in which the filter is
the same for all projections in the same view.

In this work, we observe another interesting phenomenon:
two algorithms are very close in performance. By using the
same criterion, algorithm A is better than algorithm B for one
object and algorithm B is better than algorithm A for a
slightly modified object.

FIGURE 4. Results of computer simulations using phantom 1.

FIGURE 5. Results of computer simulations using phantom 2.
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We understand that using the MSE as the figure of merit
is problematic in practice and is not meaningful for many
tasks (21). This paper merely presents a mathematic case: if
the MSE is chosen as the figure of merit, the MLEM algo-
rithm and the noise-weighted FBP can give similar results.
Since the FBP algorithm is linear, a potential application of
the noise-weighted FBP algorithm is in quantitative imag-
ing—for example, in dynamic studies of compartment
modeling.
Why not use one of the many existing window functions

(e.g., the Hann window or Butterworth window)? Unlike
so many existing window functions, which are specified
by the cutoff frequencies, the new window functions are
nonstationary and are specifically determined by the data
noise.
The iterative MLEM algorithm is an excellent and

widely used method for image reconstruction, especially
in nuclear medicine imaging. Its projection and back-
projection matrices can readily model the imaging geom-
etry, system blurring, photon attenuation, photon scattering,
and other effects. On the other hand, it is difficult for
an FBP algorithm to model these effects. The distance-

dependent blurring can be compensated for by using
a postprocessing technique involving further blurring and
then deconvolution (22). An FBP algorithm that can com-
pensate for nonuniform attenuation in SPECT is available
(23). Unfortunately, this algorithm has poor noise perfor-
mance. It is interesting to apply the noise-weighting tech-
nique to this algorithm to see whether the noise
performance can be improved. These open problems will
be left for further investigation.

CONCLUSION

This paper suggests that a newly developed noise-
weighted FBP algorithm can perform almost as well as
the state-of-the-art MLEM algorithm when they are used to
reconstruct emission images. The noise-weighted FBP
algorithm has a parameter k that emulates the iteration
number in an iterative algorithm and must be chosen by
the user. The optimal parameters in both algorithms depend
not only on the noise level but also on the object. Currently,
we do not have a method to determine the parameter k by
just looking at the projections.

FIGURE 6. Bias vs. SD for computer simulations with
phantom 1. From right to left, each dot represents noise level
case in Figure 4 from top to bottom. Leftmost dot is for
noiseless case.

FIGURE 7. Bias vs. SD for computer simulations with
phantom 2. From right to left, each dot represents noise level
case in Figure 5 from top to bottom. Leftmost dot is for
noiseless case.

FIGURE 8. Results of real SPECT torso/heart phantom.
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