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In the present paper, a 2-dimensional adaptive autoregressive
filter is proposed for noise reduction in images degraded with
Poisson noise. In autoregressive models, each value of an
image is regressed on its neighborhood pixel values, called the
prediction region. The autoregressive models are linear pre-
diction models that split an image into 2 additive components, a
predictable image and a prediction error image. Methods: In
this research, unfiltered images were split into smaller blocks,
and best combinations of a prediction region and a block size
for the image quality of predictable images were sought by
using 3 Poisson noise–corrupted images with different image
statistics. The images had dimensions of 128 · 128 pixels.
Image quality was assessed by means of the mean squared
error of the image. The adaptive autoregressive model was fit-
ted into each block separately. Different degrees of overlapping
of the image blocks were tested, and for each pixel the mean
predictor coefficient of the different models was determined.
The prediction error image was calculated for the entire image,
and the filtered image was obtained by subtracting the predic-
tion error image from the original image. The effect of the best
adaptive autoregressive filter was illustrated using real scinti-
graphic data. Results: Generally, a prediction region of 4
orthogonal neighbors of the predicted pixel with a block size
of 5 · 5 showed the best results. The use of 75% overlapping of
the image blocks and 1 iteration of the filtering was found to
improve prediction accuracy. The results were further improved
when the 2 error term images were summed and subjected to
adaptive autoregressive filtering and the resulting predictable
image was added to the iteratively filtered image, allowing both
noise reduction and edge preservation. Patient data illustrated
effective noise reduction. Conclusion: The proposed method
provided a convenient way to reduce Poisson noise in scinti-
graphic images on a pixel-by-pixel basis.
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Autoregressive modeling uses past values of a
1-dimensional signal (1) or neighborhood values of a
2-dimensional signal (2) to extract important information
from a signal. The number of past or neighborhood values
used is called the model order. A 2-dimensional autoregres-
sive model can be regarded as a low-pass filter that divides
the image into 2 additive components, a predictable image
and a prediction error image. Ideally, the prediction errors in
a prediction error image should obey gaussian noise. The
counting statistics in a scintigraphic image obey Poisson
distribution, but with a mean value greater than, say 20,
the counting statistics can be approximated by gaussian dis-
tribution (3). Therefore, 2-dimensional autoregressive mod-
els are, in theory, suitable for noise reduction in scintigraphic
images. In the present paper, a new 2-dimensional adaptive
autoregressive model for filtering of scintigraphic images is
introduced. The adaptive autoregressive filter was tested
using an artificial organlike scintigraphic image (4) with 3
different image statistics, and illustrated with patient data.

MATERIALS AND METHODS

Simulations

A transaxial slice of a Zubal phantom (Fig.1) (4) having
dimensions of 128 · 128 pixels and a depth of 1 byte was
used to test the adaptive autoregressive models. The Zubal
phantom was originally designed to simulate x-ray–based
CT images. In the present paper, the artificial pixel values
are referred to as counts. A slice of the phantom simulated
the upper abdominal region. The tests were performed
using 3 images with different image statistics. The total
counts of the images were 28,705 (low level), 54,469 (inter-
mediate level), and 108,938 (high level). The mean counts
of the images were 1.75, 3.3, and 6.6, respectively, and the
range of pixel values was 0–32, 0–63, and 0–126, respec-
tively. A built-in MATLAB function (version 2008a, The
MathWorks, Inc.) was used to add noise to the images.

Patient Data

Skeletal SPECT was performed 3 h after an intravenous
injection of 555 MBq of 99mTc-labeled hydroxymethylene
diphosphonate. The acquisition involved 64 stops at 30 s per
stop and a 128 · 128 matrix. The range of pixel values was
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0–84. The SPECT images were reconstructed by an iterative
reconstruction technique (HOSEM Iterative Reconstruction,
version 3.5; Nuclear Diagnostics). The number of subsets
was set to 1 and the number of iterations to 10.

Autoregressive Model

In 2-dimensional autoregressive modeling, each value of
an image is regressed on its neighborhood pixel values,
called the prediction region (2). An autoregressive process x
(n1,n2) is defined by
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where aðk1; k2Þ are the predictor (weighting) coefficients,

indices k1 and k2 define the type of prediction region in a 2-
dimensional array (n1,n2 matrix), and wðn1; n2Þ represents
prediction error, that is, the difference between the pre-
dicted value and the current value in this pixel.
Multiplying both sides of Equation 1 by xðn12l1; n22l2Þ

and taking the expectation of white noise distribution, we
have
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If l1 and l2 are chosen so that xðn12l1; n22l2Þ represents a
previously computed pixel relative to xðn1; n2Þ, then
xðn12l1; n22l2Þ is uncorrelated with wðn1; n2Þ. Since
wðn1; n2Þ is assumed to be white noise with a zero mean,
for such values of l1 and l2 Equation 2 reduces to
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This kind of linear set of equations is called a normal
equation, and the solution results in a least squares estimate
of the prediction coefficients a(n1,n2).

Suppose the data xðn1; n2Þ are available for ðn1; n2Þ 2 D.
Autocorrelation is estimated by
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where xðn1; n2Þis assumed to be zero for ðn1; n2Þ;D and
N(n1,n2) is the number of terms in the summation that
contribute to the estimate.

As an example, a 5 · 5 pixel region of data is presented
in Figure 2. The hatched area is the filter mask shape
used, and the predicted sample is in the middle of the
mask. Using Equation 1, we can write an estimate for
every data point, as in the case of a 1-dimensional autor-
egressive model. Let the coordinates in the upper left corner
be (n1,n2) 5 (0,0), that is, x(0,0) 5 83, x(1,0) 5 102, etc.
Then

The Equations 5 may be written in matrix form:

x
�
5 X

�
a
�
1w
�

Eq. 6.

and the least squares coefficients a
�

opt can be solved in a
manner similar to a 1-dimensional autoregressive model
(1):
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where the X
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matrix approximates the autocorrelation
matrix.

Adaptive Autoregressive Model

In a typical scintigraphic image, there are large local
spatial variations in the count number of an image. This
factor should be considered when one is using an

FIGURE 1. Slice of Zubal
phantom. Inverse linear gray
scale is used for comparison
with original phantom.
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autoregressive model for noise reduction in an image; that
is, the same model cannot be applied to the entire image.
In the present method, the image area was divided into
smaller blocks, and the adaptive autoregressive model
was then fitted into each block separately using MATLAB
subroutines. Both forward and backward models were
fitted into each block. Each block was first scanned from
left to right and top to bottom and then backward. The
predictor coefficients were calculated using the least
squares minimization technique. Overlapping blocks
were used, and for each pixel the mean predictor
coefficient of the different models was calculated. The
prediction error image was calculated for the entire
image, and the filtered image was obtained by subtracting
the prediction error image from the original image.

Assessment of Noise Reduction

The filtered image was subtracted from the phantom
image, and the signal-to-noise ratio was estimated using the
mean squared error. The mean squared error was calculated
for different combinations of prediction region and block size.
The prediction regions were 4 orthogonal neighbors of the

predicted pixel, and 3 · 3 and 5 · 5 pixels. The block sizes
were 4 · 4, 5 · 5, 6 · 6, 7 · 7, 8 · 8, 9 · 9, 10 · 10, 11 · 11,
and 12 · 12 pixels. The effect of 50% and 75% block overlap,
and the effect of iterative adaptive autoregressive filtering on
the noise level, were tested. Finally, we checked whether the
prediction error image contained important information that
could be returned to the adaptive autoregressive filtered
image. The best adaptive autoregressive filters were then
compared with a 3 · 3 mean filter (convolution kernel: [1 2
1; 2 4 2; 1 2 1]/16) and a 3 · 3 median filter.

RESULTS

Simulations

When 50% overlap was used, a prediction region of 3 · 3
pixels with a block size of 7 · 7 performed best (Table 1).
Noise reduction was better when 75% overlap was used.
Again, the prediction region of 3 · 3 pixels displayed the
best performance, but the best block size varied from 5 · 5
to 7 · 7 (Table 2).

The results improved after 1 iteration of adaptive
autoregressive filtering, but 2 iterations decreased image
quality (Table 3). At high and intermediate count levels, the
prediction region of 3 · 3 pixels with a block size of 6 · 6
exhibited the best noise reduction. At a low count level,
there were only minor differences between the different
combinations.

A further improvement in the results was achieved when
the error term images were summed and subjected to adaptive
autoregressive filtering and the resulting predictable image
was added to the filtered image (Table 4; Fig. 3). The filtered
error term images contained important information on the
edges of the images. The prediction region of 4 orthogonal
neighbors of a predicted pixel with a block size of 5 · 5
pixels performed best overall. Edge preservation was seen

FIGURE 2. Support region
(hatched area) of 2-dimen-
sional autoregressive model.
Current predicted pixel (gray
area) is in middle of region.

TABLE 1
Mean Squared Errors for Different Combinations of Prediction Region and Block Size When Degree of Overlap Is 50%

Prediction region

Low count level Intermediate count level High count level

Block size 3 · 3* 3 · 3 5 · 5 3 · 3* 3 · 3 5 · 5 3 · 3* 3 · 3 5 · 5

4 · 4 2.09 1.73 — 8.83 3.17 — 19.12 6.29 —

5 · 5 1.31 1.23 — 3.93 3.11 — 13.32 10.50 —

6 · 6 1.30 1.19 8.41 3.95 3.29 19.17 13.72 11.70 110.07

7 · 7 1.26 1.04 1.28 3.93 3.06 3.65 13.60 10.76 14.12

8 · 8 1.28 1.07 1.17 3.97 3.21 3.53 13.99 11.31 11.92
9 · 9 1.28 1.06 1.06 3.95 3.12 3.16 14.00 11.17 11.25

10 · 10 1.25 1.09 1.15 3.95 3.32 3.38 14.01 11.78 11.81

11 · 11 1.25 1.06 1.06 3.94 3.28 3.22 14.05 11.80 11.56

12 · 12 1.26 1.09 1.08 3.98 3.46 3.48 14.17 12.30 12.51

3 · 3* 5 prediction region of 4 orthogonal neighbors of predicted pixel; — 5 modeling not possible because prediction region $ block
size.

Block sizes and other prediction regions are squares in pixels.
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in the small areas with low counts (Fig. 4), as was confirmed
by the profile analysis (Fig. 5). The adaptive autoregressive
filter performed better than the conventional 3 · 3 mean filter
(Table 5). The adaptive autoregressive filter was as efficient
as the 3 · 3 median filter at low and intermediate count levels

but not at a high count level. However, the image produced
by the adaptive autoregressive filter at a high count level
was visually closer to the phantom image than that pro-
duced by the median filter (Figs. 4 and 6), especially in
the small areas with no counts or low counts.

TABLE 2
Mean Squared Errors for Different Combinations of Prediction Region and Block Size When Degree of Overlap Is 75%

Prediction region

Low count level Intermediate count level High count level

Block size 3 · 3* 3 · 3 5 · 5 3 · 3* 3 · 3 5 · 5 3 · 3* 3 · 3 5 · 5

5 · 5 1.26 1.08 — 3.85 2.95 — 13.25 10.11 —

6 · 6 1.24 1.01 3.28 3.80 2.89 9.02 13.29 10.11 42.9

7 · 7 1.23 1.00 1.07 3.83 2.94 3.11 13.43 10.39 10.72
8 · 8 1.25 1.02 1.04 3.87 3.06 3.10 13.66 10.87 10.91

9 · 9 1.24 1.02 1.03 3.88 3.08 3.07 13.75 11.02 11.01

10 · 10 1.25 1.04 1.02 3.94 3.22 3.13 13.99 11.55 11.19

11 · 11 1.25 1.05 1.02 3.96 3.26 3.17 14.07 11.72 11.38
12 · 12 1.22 1.07 1.03 3.99 3.38 3.23 14.21 12.15 11.74

3 · 3* 5 prediction region of 4 orthogonal neighbors of predicted pixel; — 5 modeling not possible because prediction region 5 block

size.

Block sizes and other prediction regions are squares in pixels.

TABLE 3
Effect of Iteration on Mean Squared Errors for Different Combinations of Prediction Region and Block Size

Prediction region

Low count level Intermediate count level High count level

Block size n 3 · 3* 3 · 3 5 · 5 3 · 3* 3 · 3 5 · 5 3 · 3* 3 · 3 5 · 5

5 · 5 0 1.26 1.08 — 3.85 2.95 — 13.25 10.11 —

1 1.05 0.97 — 3.12 2.99 — 10.47 10.62 —

2 1.32 1.05 — 4.33 3.39 — 15.36 12.11 —

6 · 6 0 1.24 1.01 3.28 3.80 2.89 9.02 13.29 10.11 42.9

1 1.01 0.92 3.51 3.00 2.91 26.05 10.28 10.44 40.69
2 1.27 1.02 4.56 4.19 3.31 82.05 15.21 12.20 49.32

7 · 7 0 1.23 1.00 1.07 3.83 2.94 3.11 13.43 10.39 10.72

1 1.00 0.91 1.00 3.00 2.97 3.26 10.35 10.50 11.29

2 1.26 1.02 1.08 4.20 3.41 3.61 15.37 12.50 12.63
8 · 8 0 1.25 1.02 1.04 3.87 3.06 3.10 13.66 10.87 10.91

1 1.01 0.93 0.94 3.06 3.05 3.20 10.63 10.85 11.06

2 1.27 1.04 1.02 4.26 3.54 3.53 15.57 13.00 12.52

9 · 9 0 1.24 1.02 1.03 3.88 3.08 3.07 13.75 11.02 11.01
1 0.99 0.91 0.96 3.04 3.02 3.14 10.67 10.69 11.02

2 1.25 1.04 1.04 4.23 3.56 3.50 15.75 13.07 12.32

10 · 10 0 1.25 1.04 1.02 3.94 3.22 3.13 13.99 11.55 11.19
1 1.01 0.94 0.94 3.12 3.14 3.15 11.08 11.39 10.83

2 1.27 1.07 1.03 4.33 3.75 3.49 16.24 13.81 12.41

11 · 11 0 1.25 1.05 1.02 3.96 3.26 3.17 14.07 11.72 11.38

1 1.00 0.94 0.96 3.12 3.14 3.16 11.15 11.36 10.90
2 1.27 1.08 1.04 4.34 3.80 3.52 16.37 14.01 12.53

12 · 12 0 1.22 1.07 1.03 3.99 3.38 3.23 14.21 12.15 11.74

1 1.01 0.96 0.97 3.15 3.23 3.18 11.38 11.88 11.07

2 1.27 1.10 1.05 4.39 3.90 3.54 16.69 14.48 12.73

n 5 number of iterations; 3 · 3* 5 prediction region of 4 orthogonal neighbors of predicted pixel; — 5 modeling not possible because
prediction region 5 block size.

Block sizes and other prediction regions are squares in pixels.
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Patient Data

Figure 7 shows projection image data in the skeletal
SPECT study before and after adaptive autoregressive fil-
tering, and the effect of adaptive autoregressive filtering on
tomographic slices is illustrated in Figure 8.

DISCUSSION

In the present paper, we have proposed a new filter for
reducing Poisson noise in scintigraphic images. It is based
on a classic autoregressive model. The novel ideas were to
apply iterations on a planar image, to use a spatially varying
(i.e., adaptive) autoregressive model, and to use information
on the error term images for edge restoration. Our filter is
suited to removing the noise from scintigraphic planar
images or projection images of a SPECT study.
In medical imaging, different 2-dimensional autoregres-

sive models have thus far been used for lossless image
compression (5,6) and texture characterization (7) but, to
our knowledge, not for noise removal from scintigraphic
images.
The Poisson-corrupted torso images we used to test our

new filter actually represented artificial scintigraphic planar

images. We used 3 Poisson-corrupted artificial scintigraphic
images with different image statistics. Image quality was
best when a 75% overlap of the image blocks in combina-
tion with 1 iteration of the filtering procedure was used.
Importantly, we found that the error term image contained
important information about the edges of the image. Part of
the counts at the edges could be returned to the filtered
image, reducing blurring of the image but at the cost of
some increase in the noise. The best results were achieved
with the smallest possible symmetric prediction region, that
is, 4 orthogonal neighbors of the predicted pixel, with a
block size of 5 · 5 pixels. This method provided good noise
reduction while maintaining high resolution and had the
best edge preservation property.

In medical imaging, scintigraphic images are inherently
noisy, and there are large local spatial variations in the
count number of the images. Because our new filter works
in the spatial domain, its characteristics can be adapted to
match the nature of the data on a pixel-by-pixel basis—
something that is not possible when filtering is done in
the frequency domain. The computational time is longer
in spatial domain filtering than in traditional filtering in
the frequency domain, but because of fast computers, that

TABLE 4
Effect of Adding Filtered Error Term Image to Predictable Image

Prediction region

Low count level Intermediate count level High count level

Block size n 3 · 3* 3 · 3 5 · 5 3 · 3* 3 · 3 5 · 5 3 · 3* 3 · 3 5 · 5

5 · 5 0 1.05 0.97 — 3.12 2.99 — 10.47 10.62 —

1 0.95 0.91 — 2.79 2.57 — 9.25 9.20 —

2 0.85 0.88 — 2.23 2.32 — 7.12 7.87 —

6 · 6 0 1.01 0.92 3.51 3.00 2.91 26.05 10.28 10.44 40.69

1 0.92 0.86 6.13 2.71 2.49 28.05 9.19 8.85 58.47

2 0.84 0.83 5.15 2.19 2.23 143.63 7.25 7.61 40.92

7 · 7 0 1.00 0.91 1.00 3.00 2.97 3.26 10.35 10.50 11.29
1 0.91 0.85 0.94 2.73 2.56 2.72 9.31 8.95 9.15

2 0.85 0.81 0.93 2.22 2.26 2.50 7.45 7.75 8.25

8 · 8 0 1.01 0.93 0.94 3.06 3.05 3.20 10.63 10.85 11.06
1 0.92 0.86 0.89 2.80 2.63 2.69 9.61 9.31 9.20

2 0.85 0.82 0.87 2.27 2.33 2.47 7.75 8.10 8.16

9 · 9 0 0.99 0.91 0.96 3.04 3.02 3.14 10.67 10.69 11.02

1 0.91 0.85 0.89 2.79 2.61 2.67 9.66 9.21 9.26
2 0.85 0.82 0.85 2.29 2.34 2.42 7.87 8.08 8.34

10 · 10 0 1.01 0.94 0.94 3.12 3.14 3.15 11.08 11.39 10.83

1 0.93 0.87 0.88 2.87 2.73 2.71 10.04 9.83 9.16

2 0.86 0.82 0.85 2.33 2.43 2.47 8.14 8.66 8.19
11 · 11 0 1.00 0.94 0.96 3.12 3.14 3.16 11.15 11.36 10.90

1 0.92 0.87 0.89 2.87 2.72 2.72 10.02 9.84 9.27

2 0.86 0.83 0.85 2.34 2.43 2.47 8.24 8.67 8.31
12 · 12 0 1.01 0.96 0.97 3.15 3.23 3.18 11.38 11.88 11.07

1 0.93 0.89 0.90 2.91 2.81 2.75 10.28 10.37 9.52

2 0.87 0.84 0.85 2.38 2.52 2.51 8.38 9.09 8.49

n 5 number of summed error term images before filtering; 3 · 3* 5 prediction region of 4 orthogonal neighbors of predicted pixel; — 5
modeling not possible because prediction region 5 block size.

Block sizes and other prediction regions are squares in pixels.
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factor is no longer important in clinical praxis. An addi-
tional advantage of the adaptive autoregressive filter is that
it does not need any parameters. Therefore, it might be an
all-purpose filter in the future.
The quality of planar images can be improved using

contrast-enhancing and noise-reducing filters, which can
increase both the sensitivity and the specificity of a study
(8). However, filtering is essential especially in image

reconstruction of SPECT studies, because emission tomog-
raphy acquisition data are subject to substantial statistical
noise. Filtering can be performed before reconstruction (fil-
tering of projections, prefiltering), during reconstruction, or
after reconstruction (postfiltering).

Until recently, filtered backprojection has remained the
most frequently used reconstruction technique in nuclear

FIGURE 5. One-pixel-thick profile curves drawn through Zubal phantoms, noise-corrupted Zubal phantoms, and phantoms
filtered using best adaptive autoregressive model, at level shown by phantom. Count levels are low (A), intermediate (B), and high
(C). AAR 5 adaptive autoregressive model.

FIGURE 4. Low- (A), intermediate- (C), and high-count
(E) phantom images corrupted by Poisson noise. Noise was
removed using best adaptive autoregressive model (B, D, and
F). Images are individually scaled to their own maximum.

FIGURE 3. Iteratively filtered image (A) summed with filtered
error term image (B) to get final image (C). Images are individ-
ually scaled to their own maximum. Count level is intermediate.
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medicine (9,10). In traditional filtered backprojection, fil-
tering is performed both before reconstruction through the
application of a low-pass filter on projection images and
during reconstruction through the application of a ramp
filter. Prefiltering should be applied, because a ramp filter
amplifies high frequencies.
Filtered backprojection is not the only way to reconstruct

from projections, but since 1970 (11) there have been var-
ious iterative (algebraic) reconstruction methods available.
Iteration is a repeated calculation process in which the algo-
rithm uses all the projection data several times in attempting

to yield successively better approximations of the spatial
distribution of the tracer in the tissue. A common problem
with iterative algorithms is the increase of noise in the recon-
structed image when the number of iterations increases. On
the other hand, too early termination of iterations can result
in a biased image (12). In iterative methods, filtering is typ-
ically done during reconstruction. Sometimes, postfiltering is
applied in iteratively reconstructed images.

Our new filter can be applied to the projection data
independently of the reconstruction method and, in the
future, might be a complementary aid in advanced iterative
reconstruction techniques.

A limitation of our filter is that it cannot take into
account the Poisson image statistics. Scintigraphic data
follow Poisson distribution. Unlike gaussian distribution,
this is a long-tailed distribution. However, Poisson distri-
bution can be approximated by a gaussian distribution for a
mean intensity roughly greater than 20. This is not always
true in practice, but locally varying filters, such as our filter,
have been shown to effectively reduce Poisson-type noise
in low-count images (13,14).

CONCLUSION

A new theoretic way to reduce noise in scintigraphic
images was introduced. The presented filter reduces noise
in scintigraphic images in a natural manner.

FIGURE 6. Low-, intermediate-, and high-count phantom
images filtered with 3 · 3 mean filter (A, C, and E) and 3 · 3
median filter (B, D, and F). Images are individually scaled to their
own maximum.

TABLE 5
Total Counts and Mean Squared Errors of Poisson Noise–Corrupted Images and Images After Removal of Noise Using

Best Adaptive Autoregressive Model, 3 · 3 Mean Filter, and 3 · 3 Median Filter

Low count level Middle count level High count level

Parameter Total counts MSE Total counts MSE Total counts MSE

Poisson noise 28596 1.73 54210 3.17 108780 6.29

Adaptive autoregressive model 29240 0.81 54477 2.19 110950 7.12
Mean filter 28596 0.83 54210 2.71 108780 9.85

Median filter 27015 0.82 52483 2.21 106471 6.54

MSE 5 mean squared error.

FIGURE 7. Noisy projection image of skeletal SPECT (A),
and projection image with noise removed (B). Adaptive autore-
gressive model is used, with prediction region of 4 orthogonal
neighbors of predicted pixel and block size of 5 · 5 pixels.
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FIGURE 8. Adaptive autoregressive filter was applied to pro-
jection data, and transversal slices were reconstructed with
iterative method. Shown are reformatted coronal (A) and sagittal
(B) slices of skeletal SPECT image. Adaptive autoregressive
model is used, with prediction region of 4 orthogonal neighbors
of predicted pixel and block size of 5 · 5 pixels. No additional
noise removal methods were applied.
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