2006 Nuclear Medicine Technologist Certification Board Salary Survey Results

Anthony W. Knight, MBA, CNMT, RT(N), NCT
The University of Iowa Hospitals Nuclear Medicine Technology Program, Iowa City, Iowa

INTRODUCTION

The Nuclear Medicine Technology Certification Board (NMTCB) conducted a national salary survey in the summer of 2006. Surveys were mailed out to all 18,304 NMTCB certificants working in the United States and 5,690 of those surveys were returned, yielding an excellent response rate of 31%. Respondents identified themselves as staff nuclear medicine or PET technologists on 4,150 (73\%) of the returned surveys. The remaining 27% were a mixture of those working in nontechnologist positions within the field (administrators, educators, private sector positions), those working in jobs outside the field of nuclear medicine, and those who did not choose to identify a current employment category. Of the staff technologist respondents who also identified their employment status, 84% were fulltime employees and 13% were part-time. A full 90% of the part-time respondents were female, while 58% of the fulltime respondents identified themselves as female. Three per cent identified their current status as "unemployed" (3/4 of which were female). Less than 2% of the all respondents failed to list their salary information.

DATA ANALYSIS

All returned surveys were scanned using a bubble-sheet scanner and software encoded. The output data was converted to a Microsoft Excel file, and analysis of the data was performed using Excel database functions. All entries in the database were evaluated for errors and completeness. Miscodes were considered invalid responses and eliminated from the file. Blank cell entries were maintained but individual records containing blank cells were not used in any analysis that required the missing data. As a result, any crosstabulated statistics reported here do not use any information provided by those respondents who did not complete the appropriate items needed to make that analysis. Their record may, however, have been used in the analysis of other questions for which their responses where deemed sufficient. It should be recognized that since the records used in any one specific analysis may differ from those used in another

[^0]analysis, output values for the same statistic may vary somewhat from one table to another. Salary data cross-referenced with different demographic variables may produce differing median or mean salaries for any given group of certified nuclear medicine technologists (CNMTs). Salaries 3 standard deviations above the mean ($\mathrm{N}=22$) were not used in this analysis. As extreme outliers, it was felt that they were not representative of typical technologist salaries (or were in fact miscoded cells or bogus entries). Inclusion of these extreme values would have significantly skewed the overall mean values. It should also be mentioned that any conclusions drawn on this data should be made considering the appropriateness of the sample sizes.

SALARY BY JOB CLASSIFICATION

Table 1 provides the median, mean, and range of annual full-time base salaries for the various nuclear medicinerelated positions, sorted in terms of highest to lowest median salaries. The overall (across all NMT positions) statistics are listed at the bottom of the chart. An hourly equivalent of the median salaries is also listed. Assuming that the industrywide standard for NMT salary comparisons is the hospitalbased, general imaging technologist, it appears that the current median market value for general nuclear medicine technology skills is approximately $\$ 59,000 —$ just over $\$ 28$ per hour. The range of salaries for people in these positions is extremely wide however ($\$ 20,984$ to $\$ 115,000$ per year).

The data does suggest that NMTs are compensated somewhat better for specialty skills; approximately $\$ 3,000$ per year for nuclear cardiology (Table 2), and \$10,000 per year for PET positions (Table 3). Technologists working for themselves via contract or with private staffing agencies average $\$ 10,000$ to $\$ 20,000$ more than those technologists working as hospital staff employees.

Average educational program directors salaries are comparable to the specialty technologist salaries, with program director salaries averaging approximately $\$ 67,000$ per year (on average, about $\$ 2,000$ less than PET technologists and $\$ 5,000$ more than cardiac techs). Dedicated clinical instructors, however, rank at the bottom of the list, earning a median annual salary of $\$ 55,000$. Clinical supervisors who are primarily administrators are earning in the neighborhood of $\$ 78,500$ while chief technologists and specialty supervisors are making around $\$ 73,000$ per year.

TABLE 1
Annual Base Salaries by Position

	Median	Mean	Maximum	Minimum	n	Median $\$ / \mathrm{h}$
Self-employed	$\$ 92,500$	$\$ 100,121$	$\$ 245,505$	$\$ 29,000$	33	$\$ 44.47$
Administrator	$\$ 78,348$	$\$ 78,467$	$\$ 175,000$	$\$ 40,000$	164	$\$ 37.67$
Specialty supervisor	$\$ 72,779$	$\$ 73,790$	$\$ 110,000$	$\$ 45,000$	169	$\$ 34.99$
Research, private research institution	$\$ 72,000$	$\$ 69,054$	$\$ 97,000$	$\$ 30,000$	15	$\$ 34.62$
Mobile PET, hospital-based	$\$ 71,850$	$\$ 69,047$	$\$ 80,000$	$\$ 53,997$	10	$\$ 34.54$
Chief technologist	$\$ 71,250$	$\$ 72,488$	$\$ 190,000$	$\$ 30,000$	524	$\$ 34.25$
PET-only, private office	$\$ 70,000$	$\$ 72,049$	$\$ 120,000$	$\$ 40,000$	130	$\$ 33.65$
Mobile PET, private imaging service	$\$ 69,424$	$\$ 70,115$	$\$ 160,000$	$\$ 41,000$	88	$\$ 33.38$
Program director	$\$ 67,000$	$\$ 67,895$	$\$ 110,500$	$\$ 50,000$	46	$\$ 32.21$
Temporary staffing service	$\$ 66,560$	$\$ 68,273$	$\$ 90,000$	$\$ 48,000$	35	$\$ 32.00$
Research, hospital-based	$\$ 63,000$	$\$ 64,218$	$\$ 98,000$	$\$ 34,142$	31	$\$ 30.29$
PET-only, hospital-based	$\$ 62,868$	$\$ 66,079$	$\$ 97,700$	$\$ 40,000$	57	$\$ 30.23$
Cardiac-only, hospital based	$\$ 62,212$	$\$ 64,318$	$\$ 148,000$	$\$ 42,806$	93	$\$ 29.91$
Cardiac-only, private office	$\$ 62,000$	$\$ 64,446$	$\$ 160,000$	$\$ 24,000$	705	$\$ 29.81$
Mobile nm, private imaging service	$\$ 61,200$	$\$ 64,646$	$\$ 88,400$	$\$ 42,000$	42	$\$ 29.42$
Classroom instructor	$\$ 60,550$	$\$ 64,759$	$\$ 120,100$	$\$ 25,000$	36	$\$ 29.11$
General imaging, private office	$\$ 60,000$	$\$ 61,801$	$\$ 149,000$	$\$ 27,000$	248	$\$ 28.85$
General imaging, hospital-based	$\$ 58,968$	$\$ 59,818$	$\$ 115,000$	$\$ 20,984$	1953	$\$ 28.35$
Mobile nm, hospital-based	$\$ 57,600$	$\$ 57,576$	$\$ 75,300$	$\$ 36,000$	17	$\$ 27.69$
Clinical instructor	$\$ 55,000$	$\$ 61,556$	$\$ 78,000$	$\$ 49,000$	9	$\$ 26.44$
Overall	$\$ 62,700$	$\$ 65,538$	$\$ 245,505$	$\$ 20,984$	4,405	$\$ 30.14$

TABLE 2
Annual Base Cardiac Salaries by Position

	Median	Mean	Maximum	Minimum	n	Median $\$ / \mathrm{h}$
Cardiac-only, hospital-based	$\$ 62,212$	$\$ 64,318$	$\$ 148,000$	$\$ 42,806$	93	$\$ 29.91$
Cardiac-only, private office	$\$ 62,000$	$\$ 64,446$	$\$ 160,000$	$\$ 24,000$	705	$\$ 29.81$
Combined	$\$ 62,065$	$\$ 64,431$	$\$ 160,000$	$\$ 24,000$	798	$\$ 29.84$

TABLE 3
Annual Base PET Salaries by Position

	Median	Mean	Maximum	Minimum	n	Median $\$ / \mathrm{h}$
PET-only, hospital-based	$\$ 62,868$	$\$ 66,079$	$\$ 97,700$	$\$ 40,000$	57	$\$ 30.23$
PET-only, private office	$\$ 70,000$	$\$ 72,049$	$\$ 120,000$	$\$ 40,000$	130	$\$ 33.65$
Mobile PET, hospital-based	$\$ 71,850$	$\$ 69,047$	$\$ 80,000$	$\$ 53,997$	10	$\$ 34.54$
Mobile PET, private imaging service	$\$ 69,424$	$\$ 70,115$	$\$ 160,000$	$\$ 41,000$	88	$\$ 33.38$
Combined	$\$ 69,000$	$\$ 70,153$	$\$ 160,000$	$\$ 40,000$	285	$\$ 33.17$

TABLE 4
Annual Base Entry-Level Salaries by Position (graduation years: 2003-2006)

	Median	Mean	Maximum	Minimum	n
General imaging	$\$ 52,000$	$\$ 53,315$	$\$ 97,000$	$\$ 25,500$	509
Cardiac	$\$ 56,000$	$\$ 57,081$	$\$ 140,000$	$\$ 24,000$	121
PET	$\$ 59,000$	$\$ 61,320$	$\$ 82,500$	$\$ 40,000$	51
Overall	$\$ 53,000$	$\$ 57,081$	$\$ 140,000$	$\$ 24,000$	681

TABLE 5
Annual Hospital-Based General Imaging Salaries by Regional Population

	Median	Mean	High	Low	n
Suburban	$\$ 61,110$	$\$ 62,035$	$\$ 110,240$	$\$ 27,900$	395
Urban	$\$ 60,185$	$\$ 61,852$	$\$ 115,000$	$\$ 25,500$	652
Small city	$\$ 56,181$	$\$ 57,811$	$\$ 106,080$	$\$ 30,000$	568
Rural town	$\$ 55,000$	$\$ 56,546$	$\$ 100,000$	$\$ 20,984$	311

TABLE 6
Annual Hospital-Based, General Imaging Salaries by State

Rank	State	Median	Mean	High	Low	n
1	California	\$80,000	\$80,776	\$115,000	\$48,000	98
2	District of Columbia	\$80,000	\$75,555	\$91,000	\$51,000	7
3	Nevada	\$74,500	\$78,069	\$110,240	\$53,840	11
4	Rhode Island	\$71,450	\$71,992	\$92,000	\$56,000	12
5	Connecticut	\$70,000	\$70,588	\$97,000	\$53,049	30
6	Massachusetts	\$69,899	\$68,321	\$87,000	\$45,000	43
7	New Jersey	\$68,650	\$69,237	\$86,840	\$30,000	50
8	Oregon	\$66,560	\$64,423	\$76,500	\$44,000	19
9	Hawaii	\$64,000	\$63,196	\$80,000	\$43,000	7
10	Maryland	\$63,440	\$63,620	\$88,000	\$38,500	41
11	Georgia	\$63,050	\$62,983	\$88,770	\$40,000	36
12	Washington	\$63,039	\$62,663	\$86,000	\$40,000	34
13	Colorado	\$62,250	\$63,227	\$79,000	\$52,000	21
14	Idaho	\$61,921	\$60,778	\$75,000	\$42,500	5
15	Utah	\$61,880	\$58,263	\$72,000	\$40,500	8
16	lowa	\$61,076	\$60,607	\$80,000	\$45,000	34
17	Arizona	\$60,570	\$63,738	\$79,200	\$49,920	15
18	Indiana	\$60,000	\$60,406	\$83,200	\$40,000	52
19	Texas	\$60,000	\$59,639	\$100,000	\$27,900	93
20	Wisconsin	\$60,000	\$59,867	\$90,000	\$43,000	77
21	Kansas	\$59,600	\$57,958	\$68,000	\$45,801	20
22	Illinois	\$59,378	\$60,855	\$93,000	\$38,272	78
23	New York	\$58,656	\$59,264	\$86,650	\$41,000	100
24	Louisiana	\$58,500	\$59,875	\$85,100	\$43,680	28
25	Missouri	\$58,365	\$58,654	\$79,800	\$37,000	60
26	Florida	\$58,200	\$58,416	\$89,500	\$38,160	103
27	South Carolina	\$57,943	\$58,188	\$88,000	\$41,600	32
28	New Hampshire	\$57,810	\$59,282	\$82,000	\$47,700	10
29	Montana	\$57,190	\$56,528	\$68,000	\$44,000	10
30	Michigan	\$57,167	\$57,468	\$74,880	\$38,000	84
31	Oklahoma	\$57,000	\$55,181	\$69,867	\$42,000	17
32	Minnesota	\$56,560	\$60,829	\$80,000	\$49,000	18
33	Wyoming	\$56,160	\$55,144	\$59,400	\$50,900	5
34	Maine	\$55,162	\$55,889	\$67,600	\$45,385	11
35	Alabama	\$55,000	\$54,432	\$73,000	\$45,500	17
36	Alaska	\$55,000	\$62,882	\$78,645	\$55,000	3
37	New Mexico	\$55,000	\$55,383	\$78,125	\$25,500	7
38	Ohio	\$55,000	\$55,222	\$80,000	\$31,000	128
39	Tennessee	\$55,000	\$57,200	\$94,000	\$40,000	67
40	Delaware	\$54,746	\$57,796	\$73,000	\$48,880	8
41	Arkansas	\$54,000	\$57,919	\$75,300	\$43,776	25
42	Mississippi	\$54,000	\$55,425	\$75,000	\$42,000	26
43	North Carolina	\$53,955	\$55,035	\$80,000	\$30,000	83
44	Virginia	\$53,803	\$55,939	\$90,000	\$36,200	53
45	Vermont	\$53,690	\$52,850	\$62,000	\$42,000	6
46	Pennsylvania	\$53,000	\$54,081	\$91,200	\$30,000	157
47	Kentucky	\$52,000	\$52,398	\$80,000	\$40,000	36
48	North Dakota	\$52,000	\$52,890	\$59,100	\$49,753	7
49	South Dakota	\$51,350	\$50,975	\$61,464	\$41,568	16
50	Nebraska	\$49,250	\$50,820	\$64,500	\$41,600	14
51	West Virginia	\$47,100	\$46,951	\$64,000	\$30,000	23
52	Puerto Rico	\$32,000	\$32,997	\$46,996	\$20,984	6
	National	\$58,968	\$59,818	\$115,000	\$20,984	1953

In order to get an idea of what the market value difference between subspecialties might be at entry-level, the salary data of those respondents who have graduated from an NMT program from 2003 to 2006 were grouped together
and analyzed (analysts felt that using fewer years would result in a sample size that would have been too small to yield any valid conclusions). Table 4 shows that neophyte NMTs who have gone into PET-only positions average $\$ 7,000$

TABLE 7
Annual Hospital-Based General Imaging Salaries by U.S. Region

	Median	Mean	High	Low	n
The Pacific States (AK, CA, HI, OR, WA)	$\$ 72,000$	$\$ 73,923$	$\$ 115,000$	$\$ 40,000$	161
The North East (CT, MA, ME, NH, NY, RI, VT)	$\$ 62,950$	$\$ 63,068$	$\$ 97,000$	$\$ 41,000$	212
The Rocky Mountain States (AZ, CO, ID, MT, NM, NV, UT, WY)	$\$ 60,000$	$\$ 61,224$	$\$ 110,240$	$\$ 25,500$	82
The Oil Patch States (AR, LA, OK, TX)	$\$ 58,060$	$\$ 58,951$	$\$ 100,000$	$\$ 27,900$	163
The Industrial Mid-West (IL, IN, MI, OH, WI)	$\$ 57,928$	$\$ 58,218$	$\$ 93,000$	$\$ 31,000$	419
The Plains States (IA, KS, MN, MO, ND, SD)	$\$ 57,000$	$\$ 57,900$	$\$ 80,000$	$\$ 41,568$	155
The Mid-Atlantic (DC, DE, MD, NJ, PA, VA)	$\$ 56,500$	$\$ 57,769$	$\$ 91,200$	$\$ 30,000$	339
The South (AL, FL, GA, KY, MS, NC, SC, TN)	$\$ 55,450$	$\$ 56,998$	$\$ 94,000$	$\$ 30,000$	400

per year more than their colleagues who hold general imaging positions (regardless of work setting). Those in cardiac-only positions are seeing salaries in between-roughly $\$ 4,000$ more than those in general imaging.

GEOGRAPHIC LOCATION AND GENERAL POPULATION BASE

The average annual base salaries for the hospital-based, general imaging category, sorted by population base are listed in Table 5. Not surprisingly, in most cases, those working in urban and suburban settings earn slightly more than those working in small cities and rural towns. On average, the urban/suburban salaries are about $\$ 5,000$ per year higher.

Table 6 shows the median salaries earned by full-time hospital-based, general imaging technologists, sorted by U.S. State. The highest salaries (in the \$38-39 per hour range) were reported by those working in California and the District of Columbia. The states with the lowest average salaries were West Virginia, Nebraska, and South Dakota (\$22-24 per hour range). Puerto Rico reported the lowest median earnings ($\$ 15-16$ per hour).

Table 7 groups the average salary data in traditional geographic regions. Technologists from the Pacific region report the highest annual full-time salaries with a median value of $\$ 72,000$, which is nearly $\$ 13,000$ above the national mean. The North East region has the next highest at $\$ 62,950$ per year. The Southern region reports the lowest
median annual salary of $\$ 55,450$, which is roughly $\$ 3,500$ below the national average.

AVERAGE SALARIES BASED ON YEARS OF EXPERIENCE AND AGE

Since most NMT graduates start off in hospital-based general imaging positions, and because this group has the largest number of respondents, analyzing this category of CNMT would most likely provide the insight into the current market value of new graduates and the relative standing of experienced technologist salaries. The data in Table 8 suggests that a new NMT program graduate might expect to be offered base salaries right around $\$ 50,000$ per year (just over $\$ 24$ per hour).

Salary compression is a term used to identify a market condition which results from upwardly adjusting the lower end of salary ranges (which typically dictates the salaries being offered to new and often inexperienced hires) without an equalizing adjustment at the high end of the range affecting the salaries of those who have been employed in the same position for a much longer period of time. Salary compression typically occurs in times of staffing shortages and affectively discounts work experience in the job market. The data shown in Table 8 would suggest that, although overall salaries for NMTs have dramatically increased over the last few years, many experienced nuclear medicine technologists may be suffering from the demoralizing effects of salary compression.

TABLE 8
Annual Base Salaries by Years of Experience in Hospital-Based General Imaging

Years of experience	Median	Mean	Maximum	Minimum	n
Entry level	$\$ 49,920$	$\$ 50,821$	$\$ 80,000$	$\$ 25,500$	156
5	$\$ 59,390$	$\$ 57,999$	$\$ 97,344$	$\$ 33,300$	90
10	$\$ 61,300$	$\$ 62,592$	$\$ 101,920$	$\$ 29,000$	69
15	$\$ 62,000$	$\$ 64,203$	$\$ 15,000$	$\$ 40,000$	73
20	$\$ 66,000$	$\$ 65,615$	$\$ 93,600$	$\$ 40,000$	61
25	$\$ 65,000$	$\$ 65,129$	$\$ 97,000$	$\$ 38,500$	46
30	$\$ 63,500$	$\$ 65,118$	$\$ 100,000$	$\$ 38,215$	51
35	$\$ 63,024$	$\$ 64,133$	$\$ 92,000$	$\$ 40,000$	21

FIGURE 1. Salary/experience analysis shows salary increases with experience in the early years, but the range of increase is narrow and levels out after 20 years on the job.

FIGURE 2. Age/salary analysis shows salary compression over years-of-experience.

Figure 1 shows that, for the most part, technologists are being differentially compensated for their experience on the job. However, the total range of that difference, from 1 to more than 30 years of experience, only amounts to approximately $\$ 12,000$ to $\$ 13,000$. It appears that one might expect to earn about $\$ 9,000$ to $\$ 10,000$ more than entry-level after obtaining 5 years of experience, but thereafter, additional experience would not be rewarded by the market.

This research shows that the median age of CNMTs across all job types is 44 years, and for those working in hospitalbased general imaging, it is slightly lower, at 42 years. There were only slight group differences in age between the technologist subspecialties (43 years for cardiac techs, and 41 years for PET techs). The oldest respondents were 73 and the youngest were 21 . The oldest groups were self-employed
(median $53 \mathrm{yrs}, n=34$), program directors (median 51 yrs , $n=46$), and administrators (median $50 \mathrm{yrs}, n=16$).

The age-related analysis reveals the same salary compression as the years-of-experience findings (Fig. 2). Correlations between age and experience are strongly positive ($\mathrm{r}=0.63$ for all NMT job types, $\mathrm{r}=0.71$ for hospitalbased general imaging techs) and so observing the same general trend is not surprising despite the fact that the entry-level employee workforce traditionally contains a significant number of second career graduates. The correlations between age and salaries, although positive, are considerably smaller in magnitude ($\mathrm{r}=0.28$ for all NMT job types, $r=0.35$ for hospital-based general imaging techs). These low correlations indicate that age is a very poor predictor of salary within the NMT salary ranges.

TABLE 9
Median Annual Base Salaries by Gender and Ethnicity

	Male (n)	Female (n)	Gender left blank (n)	Combined
American Indian or Alaskan Native	$\$ 77,650(14)$	$\$ 63,000(19)$		$\$ 66,000$
African-American and Black	$\$ 62,050(88)$	$\$ 59,500(67)$	$\$ 53,061(2)$	$\$ 60,320$
Asian or Pacific Islander	$\$ 70,000(135)$	$\$ 63,825(110)$		$\$ 67,000$
Latino or Hispanic	$\$ 66,425(86)$	$\$ 57,000(91)$	$\$ 110,000(1)$	$\$ 60,750$
White	$\$ 66,550(1569)$	$\$ 60,360(2316)$	$\$ 63,900(8)$	$\$ 62,500$
Ethnicity left blank	$\$ 69,200(50)$	$\$ 59,280(56)$		$\$ 65,000$
Combined	$\$ 66,560(1942)$	$\$ 60,320(2659)$	$\$ 56,904(11)$	$\$ 62,700$

GENDER AND ETHNICITY ANALYSIS

If it can be assumed that survey returns represent a random sample from the total number of CNMTs surveyed and that CNMTs represent a cross-section of the total number of nuclear medicine technologists working in the field, the statistics (Table 9) show that the profession is approximately 58% female and 42% male across all reported positions. These salary statistics were calculated using only full-time staff responses across all NMT job categories. Evidence shows a gender gap when comparing median salaries across all positions (approximately $\$ 6,000$ in favor of the males). This difference can be partially, but not totally, explained by the preponderance of males in the higher paying positions. The gap is less, but still significant, when only looking at hospital-based general imaging salaries (Table 10) where this is just over a $\$ 2,600$ difference.

This analysis provides further proof that nuclear medicine professionals are not a very diverse group. Eighty five percent of all respondents identified themselves as White. The next largest group (5\%) were those of Asian descent. Both African- and Latin-American CNMTs made up less than 4% of the respondent group while Native Americans were less than 1%. Because of the low numbers of individuals in each non-White category, caution should be used in interpreting any discrepancies in the salary statistics. According to this analysis, Black and Latino certificants report average salaries less than those of their White and Asian counterparts in every staff technologist job category (approximately \$2,000 below the overall combined median). When looking only at the hospital-based general imaging data, Latino certificants’ salaries actually move above the national overall median salaries for individuals in that position (Table 11). While the difference is less, on average, the hospital-based general imaging salaries of African-American CNMTs remain below the national mean by about $\$ 1,000$. This difference might be explained by regional salary variations relative to the current geographic distribution of each group. Sixty-one percent of Black respondents live in the Southern, Mid-Atlantic, and industrial Midwestern states while only 21% live in the higher paid Pacific, North East, and Rocky Mountain regions. The greater variance across all NMT job categories suggests that there is an under-representation of Black and Latino certificants in the higher paying positions (administrators, supervisors, chief techs, program directors, PET techs, etc.).

TABLE 10
Annual Hospital-Based General Imaging Salaries by Gender

	Median	Mean	Max	Min	n
Male	$\$ 60,125$	$\$ 62,141$	$\$ 115,000$	$\$ 29,000$	789
Female	$\$ 57,430$	$\$ 58,209$	$\$ 114,400$	$\$ 20,984$	1159
Total					1948

SALARIES VS. EDUCATIONAL BACKGROUND

Forty-eight percent of the respondents have bachelor's degrees, while 8% have a master's, and 1%, a doctorate. Fifty per cent of those working in hospital-based general imaging positions have a Bachelor's degree, while 4% have a master's, and 1%, a doctorate. According to the statistics shown in Table 12, the market value of a technologist with a bachelor's degree is only, on average, worth $\$ 2,000$ more than a 2-year degree (when considering all NMT job types). Table 13 shows that the difference is even smaller (just over $\$ 600$) when considering only hospital-based general imaging salaries. The slightly higher salaries attributed to the high school, master's, and doctorate categories prove to be more a function of the respondent's experience level than their education level.

Based on the salaries they award, employers do not appear to show any major preference for what type of NMT program from which an individual graduates. The values are so close that, when analyzing the salaries of those CNMTs who graduated in 2003 or later, the rank order of those salaries by program type differs depending on what statistic one chooses to look at (Table 14). This implies that any inference that there's a real difference between them would not be valid. For instance, although the community college median salary is higher than the 4 -year college median, that order flip-flops when mean values are used. Also, although the median for the salaries of university-associated teaching hospital graduates is lower than 3 of the 4 other groups, its mean value is slightly higher because of the higher starting and ending points of its overall range. And, although both the highest median and mean salaries are seen in hospital/ medical center graduates, this group also produces individuals garnering the lowest salaries of any group. The same patterns are seen when the analysis uses only data from the hospital-based general imaging data set.

TABLE 11
Annual Hospital-based General Imaging Salaries by Racial/Ethnic Background

	Median	Mean	Max	Min	n
American Indian or Alaskan Native	$\$ 64,235$	$\$ 64,435$	$\$ 93,600$	$\$ 46,072$	12
African-American and Black	$\$ 57,000$	$\$ 60,344$	$\$ 102,731$	$\$ 30,000$	85
Asian or Pacific Islander	$\$ 62,750$	$\$ 64,693$	$\$ 106,080$	$\$ 40,000$	124
Latino or Hispanic	$\$ 59,490$	$\$ 60,360$	$\$ 106,300$	$\$ 20,984$	88
White	$\$ 58,281$	$\$ 59,256$	$\$ 115,000$	$\$ 25,500$	1593
Total					1902

TABLE 12
Annual Base Salaries for all NMT Job Types by Highest Degree Obtained

	Median	Mean	High	Low	n	Median age	Median graduation year
High school	$\$ 62,685$	$\$ 64,540$	$\$ 125,000$	$\$ 29,000$	436	52	1984
Associate's degree	$\$ 60,739$	$\$ 63,287$	$\$ 160,000$	$\$ 25,500$	1554	44	1995
Bachelor's degree	$\$ 62,788$	$\$ 65,436$	$\$ 245,505$	$\$ 20,984$	2206	41	1995
Master's degree	$\$ 72,800$	$\$ 76,371$	$\$ 195,000$	$\$ 30,500$	351	49	1988
Doctorate	$\$ 72,000$	$\$ 76,672$	$\$ 140,000$	$\$ 48,000$	34	51	1994

TABLE 13
Annual Base Salaries for Hospital-Based General Imaging by Highest Degree Obtained

	Median	Mean	High	Low	n	Median age	Median graduation year
High school	$\$ 60,000$	$\$ 60,313$	$\$ 107,000$	$\$ 30,000$	171	52	1986
Associate's degree	$\$ 58,046$	$\$ 59,312$	$\$ 114,400$	$\$ 25,500$	696	43	1997
Bachelor's degree	$\$ 58,628$	$\$ 59,587$	$\$ 115,000$	$\$ 20,984$	972	38	1999
Master's degree	$\$ 63,580$	$\$ 65,497$	$\$ 100,000$	$\$ 33,300$	86	49	1993
Doctorate	$\$ 62,950$	$\$ 64,573$	$\$ 97,000$	$\$ 48,000$	14	53	2000

SALARIES AND CERTIFICATION IN RADIOGRAPHY

Just under 30% of the respondents currently hold dual certification in nuclear medicine technology and radiologic technology (RTR). The highest percent of dual-certified techs can be found in the private clinic, PET-only group (38\%). This should not be all that surprising given the increasingly widespread use of PET/CT scanners throughout the country. The fact that a number of states will only allow certified radiographers to run the CT portion of PET/CT imaging devices is also most likely a major contributing factor to this difference. In addition, many private physicians' offices hire cross-trained individuals so that they can staff more than one modality. The private company, mobile PET-only group has the next highest percentage of dual certified individuals (34\%). By contrast, 29% of those working in hospital-based general nuclear imaging positions are dual certified.

It does appear that the current market rewards nuclear medicine technologists for being cross-trained in radiologic technology. When averaged over all NMT job types and levels of experience, those CNMTs with dual certification earn only slightly more than those without x-ray certification (a median annual salary difference of $\$ 600$ is seen,
favoring those who are dual certified). But when only the data of recent NMT program graduates is analyzed, the difference is significant. Although only 17% of the respondents graduating from NMT schools in the years 2003-2006 were certified radiographers, the median annual salaries of that group is $\$ 2,500$ more than their classmates (Table 15). However, those higher salaries are only seen in the subspecialty groups. PET-only median salaries were nearly $\$ 4,000$ more for cross-trained individuals, and the cardiac-only median salaries were $\$ 2,600$ more. There were no differences seen, on average, in the salaries of general nuclear imaging groups. Again, this pattern would most likely be due to the increasing use of PET/CT and SPECT/CT in these specific areas and the state licensing issues revolving around the operation of these instruments.

ON-CALL ANALYSIS

Most (83%) of the full-time general imaging staff respondents who replied to the on-call survey items said that they routinely pull call as part of their job-related responsibilities. Only 11% and 13% of cardiac and PET techs, respectively, pull call as part of their job duties. Eighty-five percent of the staff respondents (across all NMT positions)

TABLE 14
2003-6 Graduates: Annual Base Salaries by Type of NMT Program

	Median	Mean	Max	Min
Hospital or medical center	$\$ 54,000$	$\$ 56,510$	$\$ 97,000$	$\$ 24,000$
Military-based	$\$ 51,000$	$\$ 52,508$	$\$ 85,000$	$\$ 30,000$
Community college or tech school	$\$ 53,760$	$\$ 54,180$	$\$ 80,000$	$\$ 25,500$
Four year college or university	$\$ 53,000$	$\$ 54,937$	$\$ 99,230$	$\$ 36,000$
University-associated teaching hospital	$\$ 52,000$	$\$ 55,858$	$\$ 140,000$	$\$ 38,272$

TABLE 15
2003-6 Graduates: Median Annual Base Salaries by Radiography Certification

	RTR Certified?		
	Yes	No	Difference
General imaging	$\$ 52,000$	$\$ 52,000$	$\$ 0$
Cardiac	$\$ 57,650$	$\$ 55,000$	$\$ 2,650$
PET	$\$ 62,767$	$\$ 58,790$	$\$ 3,977$
Overall	$\$ 55,000$	$\$ 52,479$	$\$ 2,521$

who replied to the on-call survey items said that they are being paid time-and-a-half for their time working on-call. All other on-call rates-of-pay were identified with much less frequency. Straight time was the next more frequently mentioned at 7%, followed by double time at 2%. Only 6% of the respondents are not getting stand-by pay when oncall. A fixed rate-per-hour was by far the most common stand-by pay rate identified by those who were compensated. The median dollar pay rate for stand-by figured to be $\$ 2.50$ per hour with the most commonly reported value being $\$ 2$ per hour. Most technologists were guaranteed a
minimum number of hours once they are called in. The most commonly reported minimum hours paid was 2 (by 51% of the respondents).

CONCLUSION

These survey results have helped to identify current market salary ranges for most nuclear medicine technologyrelated job categories. Cross-tabulation with a number of demographic variables has provided segmental salary data that may be useful to technologists, administrators, and educators within the field. As with any statistical data, caution should be exercised when interpreting the final statistics. Small sample size in a number of the categories created here make the output mean and range values especially susceptible to the influence of atypical and/or extreme values. It is also unlikely that the respondents to this survey represent a completely random sample of the total population of nuclear medicine technologists. Factors that play a part in an individual's ability (or motivation) to complete and return or not complete a survey of this length may have had some unidentifiable influence on the results.

[^0]: For correspondence or reprints contact: Anthony W. Knight, MBA, CNMT, RT(N), NCT, University of lowa Hospitals and Clinics, Department of Radiology, University of lowa Hospitals \& Clinics, lowa City, IA 52242.
 E-mail: anthony-knight@uiowa.edu.

