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With the advent of the computer age, the role of complex, 
computerized information structures in medicine has increased 
dramatically. Machines that use complex information in in­
telligent ways manifest "artifical intelligence." Artifical intel­
ligence (AI) is a branch of computer science concerned with 
the study of representation and search. Expert systems are 
examples of applied AI and are known as knowledge-based 
or rule-based systems. An expert system allows representation 
and search (reasoning) within the domain of a specific knowl­
edge area. An expert system is not a "thinking" machine in 
any conventional sense; it is more accurately thought of as 
a set of if-then rules that encode a specific, discrete area of 
expertise. This teaching editorial is intended to be an introduc­
tion to AI in medicine (AIM) as applied to expert systems. 
The topics covered include: 1) expert system fundamentals, 
including knowledge representation and control strategy; 2) 
the language of AI; 3) the history and application of AIM; 
and 4) methods for evaluation of AIM. A :'llore in-depth treat­
ment of the subject is provided in the literature (1-3). 

Artifical intelligence in medicine deals with the analysis and 
solution of difficult medical problems through the computer. 
This requires understanding a medical problem in such detail 
that the solution can be mechanized. This requires new science 
and technology. 

Artifical intelligence has evolved over the past 30 yr or so 
into a high-technology field with a correspondingly large asso­
ciated jargon. In general, AI procedures are large computer 
programs which possess capabilities for knowledge representa­
tion, reasoning (search), and learning or knowledge acquisi­
tion (4). Knowledge representation refers to the process and 
manner in which data and other information are encoded, 
stored, and accesssed in the computer. Reasoning refers to 
accessing the appropriate information, making logical conclu­
sions from the data, and keeping track of what steps were 
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involved in reaching the logical conclusions. Learning refers 
to the capability of improving the computer's performance with 
increasing experience in solving problems. 

In AI systems, we deal with a knowledge base. A knowledge 
base is the data base or computer stored collection of facts 
and pertinent rules for organizing and evaluating logical rela­
tionships among these facts. Both the structure and content of 
the knowledge base have to do with knowledge representation 
and how the knowledge is used in machine reasoning. Intel­
ligent systems have to change with time; the transition being 
controlled by learning through adaptation. Without adaptability 
in the machine, its ability to help us solve our information 
problems would be severely limited. Ultimately, we must also 
design systems whose learning component is itself modifiable 
through time. The major areas of AI application include natural 
language processing, automatic programming, robotics, ma­
chine vision, and intelligent or expert systems. The develop­
ment of an expert system requires the interaction of three in­
dividuals: 1) the knowledge engineer, who is the computer 
expert; 2) the domain expert, who has expert knowledge in 
the specific area of development; and 3) the user. 

To the computer programmer, what AI researchers call 
knowledge is just another word for data. Computer programs 
that manipulate knowledge use the same data structures as 
other programs: arrays, lists, binary trees, etc. At the imple­
mentation (programming) level, knowledge and data appear 
identical. However, AI researchers do make a valid distinction 
between knowledge and data. Data are simple descriptions 
of observations or results, without interpretation. Once any 
kind of interpretive or inferential rule to the data are added, 
we have knowledge. For example, suppose a program accesses 
a file of names and addresses, as in a telephone directory. If 
the program was written to print the address of each name 
a user enters, then the file could be termed data. If, however, 
the program was written to print directions on how to travel 
to the address of each name entered by the user, then the file 
could be termed knowledge. An intelligent program is one that 
uses knowledge as defined above. Knowledge is stored in 
knowledge bases like data are stored in data bases (5). Not 
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surprisingly, knowledge bases tend to have more complex 
structure and organization. 

EXPERT SYSTEMS (HEURISTIC OR 
KNOWLEDGE-BASED APPROACH) 

Expert systems are a class of computer programs that attempt 
to solve problems in a narrow domain that would ordinarily 
require a human expert to solve. An additional requirement 
is that the system must be capable of explaining its reasoning 
process. In medicine, they are a type of diagnostic program. 
Other kinds of diagnostic programs include formula-based or 
algorithmic (e.g., Bayesian) and flowchart-based approaches 
( 6). The lines of demarcation, however, between the categories 
are sometimes obscured and a particular diagnostic problem 
can be solved using a combination of all the above program 
categories (7). 

Expert systems consist of two components: I) the knowledge 
base, which contains facts, and the rule base; and 2) the control 
system or inference program or "engine" (8). The rule base 
is used to define and order relationships among the facts and 
consists of if-then statements (vide infra), referred to as pro­
duction rules. The control system controls the flow of logic 
within the program by selecting and applying the appropriate 
rules from the knowledge base to the specific case under 
consideration. 

Knowledge Representation 
In most applications of AI programming, the information 

to be encoded into the knowledge base originates from descrip­
tive statements that are difficult to represent by simple struc­
tures like arrays or sets of numbers. Clinical decision making, 
intelligent information retrieval, and robot problem solving, 
require the capability for representation, retrieval, and manip­
ulation of sets of statements. A variety of AI technologies have 
been used in the representation of knowledge, including rules 
(9), frames (10), semantic nets (11), and predicate calculus (12). 

The most frequently used knowledge representation for 
medical decision making is rules. Factual knowledge can be 

Working 
Memory 
Pattern 

• C1----+ A1 
C2----+ A2 
C3----+ A3 

PIIHern -----. Action to cha nge pattern 
g memory of workln 

CN----+ AN 

l 
FIG. 1. The basic formalism for a rule-based expert system. It consists 
of a set of if-then (or condition-action) rules and a working memory. 
A pattern is stored in working memory and compared with the condi­
tions (C1, C2, ... CN). When a condition is found that matches the 
contents of working memory, the rule is "fired," and the contents of 
working memory are changed to reflect the action (A1, A2, ... AN) 
part of the rule. This process continues until no further rule can be fired. 
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stored in the data base as context-parameter-value triples, 
modified by certainty factors (13). A context is an actual entity 
in the domain of the consultation (e.g., a patient). A set of 
parameters is associated with each context, such as age, sex, 
etc. of the patient. Each parameter of each context can take 
on values; the sex parameter of the patient context could take 
on the value of either male or female. The production rules 
operate on this factual data base and often contain heuristics 
or rules of thumb. Each rule consists of two parts: 

1. IF-THEN statement 
The IF part consists of one or several statements which 
if true allows the THEN part to be considered true. 

2. Weighting (Confidence) Factor 
Reflects the strength of confidence in the conclusion. 
Rule-based systems contain from a few to several hun­
dred rules of the form shown below (14): 

Example (Rule 578): 
IF The infection which requires therapy is 

meningitis, 
A smear of the culture was not examined, or 
Organisms were not seen on the stain of the 

culture, 
The type of infection is bacterial and 
The patient has been seriously burned 

THEN There is suggestive evidence (0.5) that 
pseudomonas-aeruginosa is one of the 
organisms which might be causing the 
infection. 

The 0.5 indicates how strongly the conclusion follows from 
the premises. The assignment of certainty factors is at present 
a controversial issue. The concept of a confidence measure 
appears to be inherently probabilistic and, therefore, amenable 
to analytical techniques such as Bayes' theorem. However, 
there are serious limitations for a model based on conditional 
probabilities, namely, the mutual independence of symptoms. 
This requirement is the Achilles heel of Bayesian analysis, be­
cause the condition of mutual independence is rarely realized . 
The amendments to Bayes formula which must be made to 
account for nonindependence of symptoms introduce great 
mathematical complexity (15). Other techniques have been 
applied to the treatment of the relatively heuristic-based medi­
cal decision-making scheme, such as fuzzy set theory (16,17). 

Control System 
The control system chooses which rule to apply and ceases 

computation when a termination condition is satisfied. Each 
rule (vide supra) is a unique condition-action pair. When the 
conditional pattern of the rule is matched by incoming facts 
or observations, the action occurs and the rule is said to be 
"fired" (Fig. 1). 

The control system uses the rules to reason (search) either 
forward (also known as forward chaining or data-driven), from 
observations to conclusions, or backward (also known as back­
ward chaining or goal-driven). In forward chaining, the rules 
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are applied whenever their premises are satisfied by the knowl­
edge base. The user begins by entering a set of facts that trigger 
all the rules whose IF part are satisfied. For example, if the 
data input to the system included the facts that the infection 
was meningitis, the culture smear was not examined or organ­
isms were not seen on the stain of the culture, the infection 
was bacterial, and the patient was seriously burned, the system 
would recognize that Rule 578 was applicable and draw the 
conclusion shown. A cascade of rule applications may ensue 
since one rule could produce a conclusion needed in the prem­
ises of another. If some facts are missing, the system will be 
unable to reach an appropriate conclusion because of uncer­
tainty in deciding which rule to apply of the ones that match 
the input data. In AI, this is referred to as conflict resolution. 
A simple strategy frequently employed is to apply the rules 
in the order in which they are encountered (2). 

Backward chaining starts from a conclusion or set of goals 
that the system tries to verify. For each conclusion or goal, 
the rules that establish the hypothesis in their THEN parts 
are applied. The IF clauses of these rules now become subgoals 
that need to be established. For example, let's reason backward 
through Rule 578 using goal-driven logic. Our goal is to deter­
mine the identity of the organism causing the infection. The 
system will retrieve and evaluate all rules which are able to 
infer infections requiring therapy, state ofthe culture, infection 
type, and bum status. This process continues until the entire 
search is exhausted for all rules consistent with the conclu­
sion. One of the problems with backward chaining is that it 
is relatively slow. 

The major advantage of using rule-based systems in medical 
decision making is that the reasoning mechanism is explicitly 
presented in the production rules. Conclusions drawn by an 
expert system can be easily explained and justified by: (a) 
displaying the rules that were applied; (b) retrieving the values 
ofthe used parameters; and (c) a description of how the rules 
interconnect. 

LANGUAGES OF AI 

The two most common AI programming languages are 
PROLOG (PROgramming in LOGic) and LISP (LISt Proc­
essing). PROLOG (18), first proposed at Marseilles in the early 
1970s, was adopted at the University of Edinburgh, Scotland 
in 1974. In addition to being used in this country, it is being 
used by the Japanese as a language of their fifth generation 
computing project. PROLOG is an interactive, interpreted 
language based on predicate calculus. The components of 
PROLOG include terms, predicates, variables, and proposi­
tions. A proposition consists of a predicate (e.g., on or likes), 
followed by its terms and ending with a period. Logical con­
nectives (and, or implies, not) are used to combine proposi­
tions. Examples of PROLOG propositions are given below: 

likes (bill, wendy), likes (bill, alice). 

This means that Bill likes Wendy and ( , ) Bill likes Alice. 

friend __ of (X,Y):- likes (X,Y), likes (Y,Z). 
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This means that X is a friend of Y if (:-) there is a Z that 
both X and Y like. 

LISP (19) was proposed by John McCarthy at MIT in 1958 
at approximately the same time as FORTRAN. LIST offers 
computing with symbolic expressions rather than numbers and 
a list representation of data. Lists can be used to represent 
any type of data or control structure, e.g., an employee data 
base (Fig. 2). 

In AI work, it is common to consider knowledge as a set 
of objects connected by a set of relationships. A graph is a 
special diagram suited for depicting such objects and relation­
ships (Fig. 3). Each object resides at a node of the graph. The 
lines connecting the nodes are called links. A link can represent 
various relationships between the nodes, e.g., is-a, is-an­
instance-of, or is-a-part-of. Graphs that have a hierarchical 
structure (as shown in figure 3) are designated as trees. The 
highest node in a tree is the tree's root node. A node higher 
up in the hierarchy is a parent to the lower nodes, the children. 
Lists, which are the only data structure of LISP, are closely 
related to tree structures. 

Expert systems are based on manipulations of symbolic ob-
jects rather than traditional "number crunching" algorithms. 
Traditional programming languages such as FORTRAN, 
BASIC, or ALGOL, are well suited for manipulation of numer­
ical data, but are inconvenient for the symbolic structures used 
in AI. The list symbol structure has made LISP the most 

• LISTS can represent any type of data or control structure: 
e.g., Here is the list form of an employee data base: 
-- Suppose an employee record looks like this: 

EMPLOYE~NAME EMPLOYEE_# JOB_TITLE 
DEPARTMENT SUPERVISOR 

-- JONES, JOHN 474428 PROGRAMMER 
DATA_PROCESSING EVANS, ANNE 

-- Such a record might look like this as a LIST: 
((JONES JOHN) 474428 PROGRAMMER 
DATA_PROCESSING (EVANS ANNE)) 

-- The data base would then be a LIST of such LISTS: 

((JONES JOHN)474428 PROGRAMMER DATA_PROCESSING 
(EVANS ANNE)) 
((JONES INDIANA) 772321 ARCHAEOLOGIST 
ANTHROPOLOGY (EVANS ANNE)) 

FIG. 2. A LISP example showing a list representation of an employee 
data base. 

FIG. 3. A tree structure representing a graph with a hierarchy. 
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popular language for AI work in the United States. In addition, 
traditional programming techniques often embed problem in­
formation and the control strategy in user inaccessible code. 
In contrast, in expert systems, there is a clear separation be­
tween the knowledge base and the control strategy used to 
manipulate the knowledge and provide maximal user interac­
tion. A new knowledge base can be substituted for the existing 
one, thereby creating a new system. Expert systems without 
their knowledge bases are referred to as shells. 

The User Interface 
An important component of any expert system is the user 

interface. The user interface is the facility by which a human 
user communicates with the expert system. This is normally 
a computer terminal with a keyboard or other input device 
and the associated computer hardware and software to interface 
with the expert system. It is at this point that the human makes 
inquiries of the expert system announcing the problem that 
he wishes to be solved. The computer, in response, will display 
questions on the monitor to which the user will supply the 
answers. These answers will be utilized in the logical reasoning 
that will be performed by the expert system in reaching a con­
clusion. The conclusion will be displayed on the monitor for 
the human to read. It is also by means of the user interface 
that the user can query the expert system as to how it reached 
its conclusion. The expert system would then respond with 
either the forward or backward chaining of premises and 
conclusions employed in the reasoning process. 

In order to make expert systems more convenient for human 
users, that is more "user friendly", the dialogue of instructions 
and responses should be conducted in a form as much like 
natural language (English) as possible. 

Computer Hardware 
Because of their complexity and large size, expert systems 

have in general been developed on large computer systems. 
However, over the last 10 yr smaller computers have become 

HEARSAY-I L~----1:~ =Y-11 c__l ___ :. :::R8AY-UI___. 

• 10LD INDICATES SYSTEMS WHERE TEIRESIAS 

MYCIN E EIIYCIN- PUFF--. 

IIOI'lWARE HAS BEEN EXTRACTED PROSPECTOR- KAS _____. 
OUT TO STAND ALONE. 
L----------- RITA -ROSIE---. 

INTERNIST--------+ 

---- CASNET ---~·EXPERT ---1~· 

PSG _____. OPa ___.. OPa4 --+ OPal _____.. 

L. R1 ___.. XCON __. 

SAINT __..SIN__. MATHL.A8-+ MACSYMA ----~ 

-- DENDAAL _____. META-DENDRAL -----+ 

1965 1970 1975 1980 

FIG. 4. Evolution of selected expert systems and system-building 
languages. 
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Man-years 
50 r----r----....,..-----.------.--

Year begun 1965 1970 1975 1980 

FIG. 5. Time required to create various expert systems. 

faster and more powerful with remarkably increased storage 
capacities. As a result, expert systems are available for personal 
computers. Because of the wide spread current interest in ex­
pert systems, the number of systems available for the personal 
computer will undoubtedly increase significantly. This in tum, 
will make expert systems even more accessible and widely 
employed. 

ARTIFICIAL INTELLIGENCE IN 
MEDICINE (AIM) 

Although many new computer systems and knowledge engi­
neering environments for medical applications have appeared, 
the essential technologies have been developed in the context 
of a number of classical expert systems. These classical systems 
include MYCIN at Stanford, INTERNIST at the University 
of Pittsburgh and CASNET at Rutgers University (Fig. 4). 
These programs were developed in the early to mid-1970s dur­
ing which time AI research activity was essentially carried 
out in a small number of academic institutions. 

Newer systems have refined these first-generation approaches, 
shortening development times (Fig. 5) and simplifying the 
knowledge engineering process. In the 1980s, the development 
of medical expert systems has spread to a large number of 
institutions, both within the United States and internationally. 

The early impetus for the expert system explosion was 
Edward Shortliffe's work with a program called MYCIN (14). 
MYCIN employed a few hundred if-then rules about meningitis 
and bacteremia in order to deduce the proper treatment for 
a patient who presented with signs of either of these diseases. 
The overall organization of the MYCIN system is shown in 
figure 6. 

The reasoning with if-then rules can be forward- or back­
ward-chained and has a number of attractive computational 
and cognitive properties. One of these cognitive properties 
is the ease with which traces of fired rules can be used to ex­
plain why a decision was reached. An excerpt from a MYCIN 
consultation session is shown in figure 7. MYCIN was evalu-
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ated at the Stanford University Medical School in 10 randomly 
selected case histories of meningitis and compared to the re­
sults obtained by the attending staff. MYCIN results were com­
parable to those of the physicians. A major obstacle to the 
acceptability of MYCIN is the clumsiness of its user interface 
(it takes over 30 min of typing per consultation). Many exten­
sions have been made to MYCIN and one, in particular, has 
focused on learning or knowledge acquisition (20). Davis's 
work on TEIRESIAS allowed an expert to interact with MYCIN 
and introduce amendments to rules as explanation of existing 
behavior of the system which might point to weaknesses in 
the rules (21). 

Other work in first generation knowledge-based approaches 
to medical diagnosis include CASNET (22) and INTERNIST 
(23). CAS NET consists of a large semantic network for diag­
nosis of glaucoma patients and gives advice considered to be 
as accurate as a physician's. INTERNIST is a hierarchical sys­
tem for internal medicine and contains a massive knowledge 
base. Much of the stored knowledge is in the form of signs 
and symptoms with weights relating them to various diseases. 
INTERNIST generates a hypothesis about the patient and then 
searches its data base for suporting evidence. INTERNIST 
accepts as data - 5,000 signs, symptoms, history, or labora­
tory values. Each of these values is expressed as a string 
of characters like "serum immunoelectrophoresis lgA is in­
creased." This string of characters must be typed exactly; 
otherwise, the input is rejected. Interfaces that allow more 
varied and natural phrasing are being developed. 

The 1980s are probably going to be considered the decade 
of technology transfer for expert systems. Based partially on 
the pioneering efforts described above, expert-system shells 
were developed. These shells have four things that general 
programming toolS do not (24): prepackaged representations 
for important concepts, efficient inference and representation 
tools for use in applications, specialized user interfaces, and 
generic application knowledge. Thus, these shells provide a 
programming environment that allows one to write an expert 
system without worrying about the internal operation of the 
inference program. Concurrently, reports began to appear 
d~scribing the so-called "second generation" expert systems. 
The second generation programs tend to be written to solve 
clinical problems using "generic" AI approaches. A partial 

FIG. 6. Overall organization of the MYCIN system. 
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listing of recently introduced medical expert systems is given 
in Table l. 

EVALUATION OF AIM 

The evaluation of computer systems which apply artificial 
intelligence in medicine can be performed at three levels (25): 

I. Subjective evaluation of the research contributions of 
a developmental system. 

2. Validation ofthe system's knowledge and performance. 
3. Evaluation of the clinical efficacy of the operational 

consultation system. 

The evaluation of a system's knowledge and advice should 
include accuracy, completeness, consistency, performance, and 
an understanding of how conflicting expertise is handled. Ac­
curacy, for example, is tricky to deal with since traditional 
error rate techniques (sensitivity and specificity) frequently 
don't take into account the uncertainty and degree of confi­
dence associated with medical diagnosis (26). As an example, 
consider that one expert system predicts that a patient has liver 
disease with a probability of 0.80 and a second expert system 
also predicts that the patient has liver disease but with a prob­
ability of 0.50. Both systems could be counted as correct by 
traditional criteria if the patient did have liver disease. Ac-

My therapy recommendations will be designed to treat for organisms 
that either are very likely or. although less likely. would have a 
significant effect on therapy selections If they were present. It Is 
Important to cover for the following probable lnfectlon(s) and 
associated organlsm(s) 
INFECTION-1 IS MENINGITIS 

+ <ITEM-1 > E. COLI [from clinical evidence only] 
+ <ITEM-2> PSEUDOMANAS-AERUGINOSA [from clinical evidence 

only] 
+ <ITEM:3> KLEBSIELLA-PNEUMONIAE [from clinical evidence 
only] 
+ <ltEM-4> DIPLOCOCCUS-PNEUMONIAE [from clinical evidence 
only] 

41) Does Pt538 have a clinically significant allergic reaction to any 
antimicrobial agent? 

•• NO 
[Considering AMPICILLIN-AND-GENTAMICIN for use against 

INFECTION-1 ... ] 
42) Do you have reason to suspect that Pt538 may have Impaired 

renal function? 
NO 

43) Pt358's weight In kilograms (or <number> POUNDS): 
•• 70 

The final concluSion is about the best therapy to 
cover for the likely cause of the inf~ion, as . 
determined from the incomplete ev1dence eva11able 

[REC-1] My preferred therapy recommendation Is as follows: 
In order to cover for Items <1 2 3 4>: 

Give the following In combination: 
1) AMPICILLIN 
Dose: 3.5g (28.0ml) q4th IV [calculated on basis of 50 

mgjkg] 
2) GENTAMACIN 
Dose: 119 mg (3.0 mi. 80mg/2ml ampule) q8th IV (calculated 
on basis of 1 .7 mg/kg plus consider giving 

5 mg q24th Intrathecal] 
Comments: MonHor serum concentrations 

Since high concentrations of penicillins can Inactivate 
amlnoglycosldes, do not mix these two antibiotiCs In the same IV 
bottle 

Do you wish to see the next choiCe therapy? 
•• NO 

The user may have reasons to prefer another 
combination of drugs. At this poirt MYCIN is 
prepared to show other therapies, compare its 
preferred therapy to the one the user specifies. 

FIG. 7. Excerpt from a MYCIN consultation session. 
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TABLE 1. "Second Generation" 
Medical Expert Systems 

System Use Reference 

AI/Rheum Rheumatologic diagnosis 27 

SPE Interpretation of serum protein 28 
electrophoresis data 

TIA Assessment of transient ischemic 29 
attacks and therapy advice 

ONCOCIN Oncology protocol management 30 

SEEK Rule checking program for a 31 
diagnostic system 

LIT02 Liver disease diagnosis 32 

ATIENDING Critiques anesthetic management 33 

ALVEN Assessment of left ventricular 34 
wall motion 

SPHINX Broad range of diagnosis 35 

CADIAG-2 Cardiac diagnosis 36 

GAITS PERT Evaluation of abnormal locomotion 37 
arising from stroke 

FLOPS Echocardiogram analysis 17 

curacy measured in this way, therefore, loses information since 
it misses the fact that the first expert system was in some sense 
"more correct" than the first. 

Clinical efficacy evaluation of AIM should include the ac­
tions of a physician, patient care, patient health, and cost/ 
benefit analysis. The most fundamental issue should be the 
system's impact on patient health. 

SUMMARY AND FUTURE 

A new programming technology has been evolving around 
the transference of human expertise in a given domain into 
effective machine form so as to enable computing systems to 
perform as advisory consultants. Expert system development, 
confined to a small number of academic centers in its early 
days, has spread to a large number of institutions internationally. 

Artificial intelligence is a branch of computer science con­
cerned with the study of representation and reasoning (search). 
Two representation modes are lists, as used in LISP, and logic, 
as used in PROI.DG. Searches can either be forward- or back­
ward-chained or a combination of both. The domain of an AI 
system is the area in which the system solves problems. Some 
of the fundamental AI systems were developed to diagnose 
diseases; the domain of such a system would be the set of dis­
eases that the system was designed to diagnose. Expert systems 
that diagnose diseases are examples of AI systems and are com­
puter programs that strive to imitate the thinking and advice 
of a human expert in a given domain. The best uses of artificial 
intelligence in medicine include: 

1. Areas in which a human expert exists. 
2. Interpretation/Classification. 
3. Probabilistic reasoning (to control inferencing). 
4. Explanation capabilities (how/why). 
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The Japanese Fifth Generation Computer Systems project 
calls for improvement in the state-of-the-art of AI in medicine 
in both hardware and software (2). This has triggered a national 
effort in the United States resulting in the creation of Micro­
electronic and Computer Technology Corporation (MCC) and 
funding by the Defense Advanced Research Projects Agency 
(DARPA). This environment should provide a healthy growth 
period for medical expert systems with more widespread use 
within the next 10 yr to aid in diagnosis and medical decision 
making. 
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