
FORTRAN Programming in Nuclear Medicine

Till Noever

Emory University Hospital, Atlanta, Georgia

This is the second in a series of four Continuing Education ar
ticles on computers in nuclear medicine. After studying this arti
cle, the reader should be able to: 1) understand the basics of FOR
T~N programming as they apply to nuclear medicine; and 2)
d1scuss the meaning of key components in a FORTRAN program.

The programming language FORTRAN (FORmula TRANs
lator), in a variety of versions, has been a ubiquitous feature
of the programming world for many years-and, by sheer in
ertia, is probably going to be around for an indefinite time
despite its detractors' hopes for its demise. '

FORTRAN is a compiled language (1), which means that
the user must write a source program using a text editor pro
gram. The source program is then processed through another
program, called a "compiler," which translates the english
like text into machine language. The output from this is call
ed an object or relocatable binary file, which must then be
inte~rated by yet another program into the specific computer
environment. All these procedures are fairly standard and
straightforward once an individual gets used to them. A good
explanation of the procedure has been previously published
in t~e Journal (1) and should be considered prerequisite
readmg for understanding of the current article.

The compiler checks the source program for any errors
detectable at that level (incorrect statements, nonsensical or
incomplete iteration loops, inaccessible points in a program,
etc.), and will request their correction before producing the
object file.

Introductory texts on FORTRAN programming abound, and
the reader should refer to these for more detail (2-4). It is
assumed that the reader is familiar with such terms and con
cepts as "statement," "main program," "subroutine," "varia
ble," "declaration," "buffer," etc., in relation to computer
languages in general and FORTRAN in particular. For those
who are not, a brief glossary of some of the key terms of the
language, as well as some information on FORTRAN state
ments are given in Appendices F and G.

Although almost all implementations of the language dif
fer to a lesser or greater degree, there is a large common core
of statements that represent the "portable'' section of FOR
TRAN. Portable means that a program written using these
common-to-all FORTRAN statements may be, in their source

For reprints contact: Till Noever, Imaging Science Laboratory. Department
of Radiology, Emory University Hospital, 1364 Clifton Road N .E., Atlanta,
GA 30322.

VOLUME 14, NUMBER 2, JUNE 1986

code versions, transported between computers implementing
FORTRAN and should recompile and run without any
problems.

The nonportable sections of the language implementation
are usually those statements relating to input and output-to
terminals and files-or function calls closely related to opera
tions specific to the implementation on a particular computer.
In addition, some later versions of FORTRAN (such as FOR
TRAN 77) have been enhanced to include features such as
conditional execution of blocks of code without the require
ment of GOTO statements: a feature that was not implemented
in the original versions of the language. Programs using these
advanced features are unlikely to compile on most other
machines.

There are other portability problems that are unrelated to
system considerations. One such problem is that a few com
puters will actually compile FORTRAN programs written in
lower case characters whereas the vast majority will not.
Therefore, even if one happens to have one of the former sys
tems, it is probably a good idea to continue writing FORTRAN
statements in UPPER CASE characters only.

Portability is, by the way, not a purely academic issue. With
the proliferation of inexpensive computer systems on the mar
ket, it becomes quite feasible and efficient to develop and pre
test algorithms on a personal computer and then transport them
to a clinical system for final testing. The proper coding and
structuring of programs, in order to make as many of them
as portable as possible, is therefore quite important.

Because of the ready availability of FORTRAN compilers,
they may be found on almost all programmable nuclear medi
cine systems as the first-choice programming language. They
usually incorporate a host of system supported "library" func
tions for display and data access.

Completion of a polished program is rewarding, but lack
ing specific programming details can be frustrating and is
eased by using thoughtful programming structure. The follow
ing sections, with respect to FORTRAN programming in nu
clear medicine applications, will concentrate on those aspects
of programming that enhance: 1) a program's readability and
portability; 2) a program's memory use, execution speed, and
interactivity; and 3) the translation of programs in other lan
guages (especially BASIC) into FORTRAN.

PROGRAMMING APPLICATIONS

Readability
Although many of the remarks in the following section apply

89

to the use of any programming language, those that are FOR
TRAN-specific will be evident from the context. However,
programs that are written for nuclear medicine application
(or any other diagnostic or therapeutic computing application)
are quite different from the small 10-100-line programs that
are usually generated for individual use on a personal computer
or from those that are perhaps used for a research project on
the hospital's or university's computing facility. The difference
lies in their use. In this instance, programs are meant to aid
in the diagnosis of disease, and the integrity of their algorithms
and function is therefore paramount. Any program, and be
it ever so tentative, has the potential for expansion and eventual
routine application. This implies that the initial designer/pro
grammer may have to surrender his program to others for
further development or possible clinical testing and validation.
What may have been a tentative idea may become a clinically
usable procedure, incorporating all the ethical and legal ram
ifications that it may entail. The keywords in the develop
ment of such programs are, therefore, "documentation" and
"readability."

This means, most importantly, that the program must contain
concise, to-the-point comments that describe the purpose of
every main program or subroutine. Functional subsections
(e.g., a program loop to filter the data in an image) should
be preceded by a comment on their purpose. Such in-line com
ments need not be long, but should exist nevertheless. An
individual who is reasonably adept with the programming
language and the algorithms that are used ought to be able
to follow the program flow in its source-coded version without
major difficulty. Alterations to a given version of the program
should also be appropriately commented, and former versions
should be kept for reference. Experience shows that even ap
parently trivial or "cosmetic" changes to a working program
may otherwise result in many frustrating hours of work in an
attempt to trace an elusive "bug."

For those programmers familiar with BASIC, comments in
a compiled program, unlike those in the universally im
plemented interpreted version of that language, neither add
to the space of the loaded program nor do they slow it down.
The compiler totally ignores comments when generating
machine compatible codes. Their existence is confined sole
ly to the source program.

FORTRAN's comment lines have to be preceded by the
letter C in the first column, which will instruct the compiler
to ignore everything in the current line. For full portability,
any program line containing no code at all (e.g., lines that
are used for visual separation of program segments) should
also be prefixed by a C.

The programmer is advised to resist the temptation to add
comments later. Experience shows that the most lucid and
effective commenting takes place when the code is initially
written and the programmer uses his comments to clarify his
own train of thought. The extra time and effort spent will
always pay off. It may even improve on the logic in the original
program since what looks good on a flow chart may not appear
as neat and readable when coded.

90

Portability
Buffer size. Program portability may be ensured by keeping

buffer sizes as small as possible, which will then ensure that
machines with smaller memory space will be able to accept
a program or subroutine without major modifications in pro
gram logic. It should be noted that, in this context, a large
number of nuclear medicine computers (assuming they are
FORTRAN-programmable) still allow only - 64 kilobytes
of effective programming space. Many programs written for
these systems will allow, after inclusion of all the system utili
ties and library functions necessary to run the program, only
an uncomfortably small portion of free space for program
codes, buffers, and variable allocations. In such programs,
if two 64 x 64 resolution image buffers (one for input/unproc
essed data and one for output/processed data) are included,
then 16 kilobytes (two images at 64 x 64 pixels per image
that use 2 bytes per pixel) of memory are taken up before pro
gramming even starts. The same calculation for 128 X 128
resolution images shows that these images will use all of the
64 kilobytes available. Hence, the need for judicious memory
use.

Separation procedures. Portability will also be ensured by
separating processing, input/output program segments, or sub
routines.

Since the system-specific calls for graphics, keyboard input/
output and file read/write functions are most likely to differ
between computer systems. Consequently, they should be kept
apart and preferably be placed in subroutines which are called
from the main processing program. Subroutines can then be
rewritten for each different machine, keeping the remainder
of the code unchanged.

Special caution should be applied with regards to the use
of formatted keyboard input (e.g., the "ACCEPT" statement).
An unacceptable formatted input at runtime causes the pro
gram to crash in some operating systems whereas other systems
either catch the error and reprompt for input or else generate
nonsensical input conversions that may cause puzzling results.
If the time exists, a generalized input handler for keyboard
data may be written in order to avoid such crashes. One such
example, written in a portable version, is given in Appendix
A. The level of commenting in this routine probably exceeds
anything that can be realistically expected of a scientific pro
grammer (although it is usually required in a commercial
environment). This subroutine is almost crash-proof and pro
vides decoding of the input string (which is seen as just a string
of characters and terminated by a single carriage return) into
integer and real numbers. It performs a function not unlike
the BASIC "INPUT" statement. This subroutine cannot accept
exponentially formatted inputs. It is, however, a good example
on which to expand, and it will run under most FORTRAN
versions.

Appendix B contains the code for another program. This
program performs a two-dimensional 3 X 3 convolution filter
on a 64 x 64 image that uses only one image buffer for input
and output image and assigns the actual filtering operation
to a 3 x 64 integer buffer and an intermediate output array,

JOURNAL OF NUCLEAR MEDICINE TECHNOLOGY

local to the subroutine, which take up only another 512, rather
than 8,192, bytes of storage.

Appendix C illustrates an example of how to combine these
two previous subroutines with some other completely fictitious
functions which will, presumably, read and write out images
into a program that allows two-dimensional filtering of 64
X 64 images with operator-specific convolution coefficients
(1). Note that there is clear distinction between the use of sys
tem-specific utilities, keyboard input/output, and data process
ing. The layout of the program logic should make it compara
tively easy to rewrite it for most systems.

MEMORY USE, SPEED, AND
PROGRAM INTERACTIVITY

The subroutine in Appendix B is exemplary of a basic dilem
ma faced by almost all programmers: there is an inverse rela
tionship between the amount of memory used for storage of
data (input, intermediate, or output) and the length of the pro
gram required to process the data, in addition to the amount
of time required for processing.

An example of how program size decreases when more
memory space becomes available is illustrated in Appendix
D. This is a reworked version of the filtering program (Ap
pendix B), but this time the input and output buffers (while
requiring an additional 7,808 bytes of storage for image data
are saving maybe 100 bytes maximum in terms of program
code) are separated. In this version, the speed will also increase
dramatically because it has now become unnecessary to read
data into the temporary buffer. If only a single image is to
be processed, the difference in speed at execution time may
not be immediately noticeable. If, however, the image is, for
example, a multiframe dynamic study, then the delays will
mount and eventually become quite intolerable (especially
with more complicated and mathematically more demanding
operations).

Another example of the ubiquitous compromise is shown
in the programs in Appendix E. All these are intended to draw
a ring, 10-pixels thick, on a fictitious display. In order to do
this, it is necessary to calculate a series of 512 x 10 x-y coordi
nate pairs (total number of pairs = 10,240) that lie around
a given center. Since we are dealing with rectangular coordi
nates, the generation of these points involves the calculation
of sines and cosines and their placement onto the screen using
a subroutine called WRTPTS (fairly representative of the type
of graphics utilities supplied with programmable systems) that
allows us to draw a specifiable number of points (given in x-y
coordinate pairs) from a buffer on a screen.

Three possible versions of this program are given, and each
contains a different way of making the compromise.

Version 1 calculates each pixel coordinate inside the loop
and then outputs the pixel to the screen. This program occupies
the smallest possible program space, and will, in addition,
probably take anywhere up to one minute to run (assuming
one pixel may be drawn with each new scan of the video signal
across the screen). This is a ballpark figure which is, however,
based on experience.

VOLUME 14, NUMBER 2, JUNE 1986

Version 2 takes account of the fact that sines and cosines
are computationally complicated procedures, which should
not really be placed into the innermost processing loop. It
therefore calculates them only once, places the value of sines
and cosines into two lookup tables, and then reduces the opera
tions inside the loop to simple multiplications. This will save
a lot of time, but it also requires an additional 512 (points)
X 2 (sine and cosine) X 4 (4 bytes/floating point number)
= 4,096 bytes in terms of storage.

Version 3 extends this theory still further by observing that
execution of the subroutine WRTPTS always takes the same
amount of time, and it would, therefore, be better not to write
points singly, but in batches of 512. This will speed up execu
tion dramatically, but it will only add another 512 (points)
X 2 (points per coordinate) x 2 (bytes per coordinate) = 2 ,048
bytes to the storage space required.

Of course, intermediate solutions to the extremes presented
here are possible, but they all will involve a careful considera
tion of the compromise between the possible and the desirable.

The possible is dictated by the machine and computing
environment used. On the other hand, the desirable is defined
by the fact that most processing in nuclear medicine involves
a fairly high degree of operator-machine interaction, and slow
ly executing programs are not only annoying, but also ineffi
cient, since they either tie up otherwise needed manpower or
impose long additional working hours.

PROGRAM TRANSLATION

BASIC and FORTRAN
In all probability, many readers, if they have had any ac

quaintance with programming, will probably be familiar with
one of the many implementations of the language BASIC be
cause it is found on almost all personal and large system
computers.

Many potentially useful programs for medical applications
are created in the close interactive development environment
BASIC provides. As these programs grow more complex (and
slower, using the interpreted versions of BASIC) and require
increased sophistication of specific display and database func
tions that are to be found only on the systems provided by
medical computer manufacturers, the need to transport them
will increase. BASIC will have to be translated into FORTRAN
in some way.

Although some provisos must be followed if the transfer is
to be accomplished without major rearrangement of program
logic and layout, this is less complicated than it sounds. In
order to do this, it will help if the BASIC program is modified
(or maybe written initially) with the following in mind:

1. FORTRAN has virtually none of the convenient BASIC
keyboard input/output and string handling functions.
They would have to be specially written (e.g., the sub
routine KEYIN in Appendix A, which might be used
to replace INPUT), and the effort would probably be
worth it. These functions can then be included in any
programs requiring them. As far as the initial BASIC
program is concerned, the best way of minimizing trans-

91

lation problems is to keep any such functions well sep
arated from the processing sections of the program. Bet
ter still, do not use any such special functions at all if
possible. Enter any variables into the interpreted BASIC
program rather than inputting them at runtime.

2. Do not use more than one statement per program line!
In BASIC, this tends to slow one down, but the nature
of FORTRAN code format makes it necessary.

3. Any "IF-THEN-ELSE" statements in BASIC should be
replaced with following the rules: (a) Avoid combinations
involving "ELSE;" and (b) The only instruction follow
ing an "IF" should be a "GOTO" (or "THEN GOTO,"
depending on implementation).

4. All "FOR-NEXT" loops become "DO statement#
CONTINUE" type loops.

5. Data type declarations (INTEGER, REAL, DOUBLE
PRECISION, STRING) should be kept as clear as possi
ble to avoid type errors in translation. Explicit declara
tions should be used in the FORTRAN implementation
(i.e., use INTEGER, REAL, DOUBLE, etc. declarators
rather than DIMENSION in the FORTRAN version).

6. Place all BASIC subroutines in neat blocks near the end
of your program. Recall that the "GOSUB line#-RE
TURN" statement becomes an explicit "CALL sub
routine name (argument list, if any)" in the FORTRAN
implementation. Write the BASIC program so that it sets
up the variables required to run the "GOSUB" sub
routine immediately before the GOSUB statement. This
will allow easy identification of argument requirements
in the FORTRAN implementation.

7. File access in BASIC (using the concept of "channels"
and sequential/record-linked, and formatted/unformatted
read-write access) is often not too dissimilar from that
in FORTRAN. Syntactic differences notwithstanding,
little trouble should be found here. It is advisable, how
ever, to keep the program sections that perform these
functions well distinct (and commented) from "process
ing" type operations.

Given the nature of the interpreted language and its tendency
toward slow execution, most of these programming prescrip
tions may be generally useful because they might help in de
bugging the program as well.

Experience also shows that BASIC programs tend to grow
"onmnically" with little forethought as to the program struc-

ture. Consequently, they are difficult to translate unless their
logic is "decoded" by using devices like flowcharts or "pseudo
code" (a shorthand english-type of program flow description
with a syntactic structure not dissimilar to a structured pro
gramming language rather than FORTRAN or BASIC).

The approach that is used really does not matter in the
end. The programmer will have to follow his/her own prefer
ence and judgement while keeping in mind the application
requirements.

In conclusion, the aphorism that "practice makes perfect"
is a truth that applies even more so to programming. It is also
equally true that anybody reasonably familiar with BASIC pro
gramming will be able to master FORTRAN without great
difficulty.

Given that a particular problem is understood (i.e., formula
tion of a description of the algorithm required to process a
given set of data to generate some particular kind of result),
it is a much smaller step from that point to writing a simple
program to execute that procedure than most people think.
The barrier between the person and his or her ability to pro
gram is mostly psychological, and there is little correlation
between it and their general abilities, intelligence, or training.
This is especially applicable to those individuals who work
in an environment where some sort of scientific data evaluation
takes place every day-any nuclear medicine department, for
example.

The problem is then reduced to one of opportunity and
motivation-both of which are, unfortunately, irreducible to
algorithmic solution.

ACKNOWLEDGMENTS

The author gratefully acknowledges the support and assist
ance rendered by Joel A. Oates, CNMT, in the review and
preparation of this article.

REFERENCES

I. Erickson JJ. Nuclear medicine computers-Software. J Nuc/ Med Techno/
1985;13:140-49.

2. McCracken DD. A Guide to FOKTRAN Programming. New York: John
Wiley. 1961.

3. Murre! PW, Smith CL. An Introduction to FOKTRAN IV Programming.
New York: Int. Textbook Co .• 1970.

4. Nickerson RC. Fundamentals ofFOKTRAN 77 Programming. Boston:
Little, Brown & Co., 1985.

APPENDIX A
Example Keyboard Input Routine

c··
c
C PROGRAM TO GET A STRING OF ASCII CHARACTERS FROM THE KEYBOARD AND
C DE-CODE THEM INTO INTEGER AND FLOATING-POINT NUMBER, IF POSSIBLE
c

c
c
c
c

92

SUBROUTINE KEVIN (!PROMPT, !STRING, NUMIN, INUM, FNUM, IER)

ARGUMENTS:
I PROMPT PROMPT STRING (UP TO 80 CHARACTERS,

TERMINATED BY A NULL BYTE)

JOURNAL OF NUCLEAR MEDICINE TECHNOLOGY

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

ISTRING

NUMIN

INUM

FNUM

lEA

STRING OF CHARACTERS (UP TO 80 LONG)
FROM THE KEYBOARD. CHARACTERS WILL BE
"BYTE-PACKED" INTO THE ARRAY UPON EXIT
FROM THIS ROUTINE. THIS ARRAY IS ALSO
USED TO HOLD THE INITIAL INPUT DATA.
NUMBER OF INPUT CHARACTERS IN INPUT
STRING
INPUT STRING DECODED AS INTEGER (IF
POSSIBLE)-ELSE SET TO 0
INPUT STRING DECODED AS SINGLE-PRECISION
FLOATING POINT NUMBER (IF POSSIBLE
OTHERWISE THIS WILL BE SET TO 0.0 !)
ERROR RETURN. SHOULD BE = 1 IF EVERYTHING
WENT O.K.

SUBROUTINES/LIBRARY FUNCTIONS USED:
(DEPENDING ON COMPILER AND SYSTEM THESE MAY HAVE TO BE
DECLARED AS "EXTERNAL:')
GCHAR GET CHARACTER FROM KEYBOARD
PCHAR OUTPUT CHARACTER TO VDU
BYTE FORTRAN BYTE FUNCTION USED TO EXTRACT A BYTE INTO

LOWER BYTE OF ONE-WORD INTEGER

COMMENTS: ONLY PRINTABLE CHARACTERS AND THE RUBOUT/DELETE
CHARACTER ARE ALLOWED AS INPUTS.
THE "RETURN" CHARACTER (ASCII 13) TERMINATES THE
STRING.

PRINTABLE CHARACTERS START AT ASCII VALUE 32 (BLANK)
AND END AT ASCII VALUE 126 (-). AU BOUT/DELETE IS
ASSUMED TO BE ASCII VALUE 127.

THE "BACKSPACE" CHARACTER IS ASSUMED TO BE ASCII 8.

ORIGINAL VERSION CREATED BY name, date

UPDATE RECORD:

c **

c
C DECLARATIONS
c
C SUBROUTINE ARGUMENTS: (DECLARE ALL BY TYPE AND AVOID
C "DIMENSION" DECLARATOR)

INTEGER IPROMPT(80),1STRING(80),NUMIN,INUM
REAL FNUM

c
C---
C
c
c
c

c

c

1
5
c
c
c

BEGINNING OF EXECUTABLE CODE

DISPLAY PROMPT STRING
DO 1 1=1,80
TERMINATOR?
IF(BYTE(IPROMPT,I).EQ.O)GOTO 5
CALL PCHAR(BYTE(IPROMPT,I),IER)
OUTPUT ERROR?
IF(IER.NE.1)GOTO 1000
CONTINUE
CONTINUE

INITIALIZE VARIABLES AND STRING BUFFER
NUMIN=O
INUM=O
FNUM=O.O

VOLUME 14, NUMBER 2, JUNE 1986 93

c
DO 10 1=1,80
ISTRING(I)=O

10 CONTINUE
c
C SOME ADDITIONAL LOCAL VARIABLES THAT HAVE TO BE INITIALIZED

VAL=O.
POWER=1.

c
C GET INPUT STRING- MAXIMUM OF 80 CHARACTERS
C CRITERION FOR 80 CHARACTERS IS THAT THE VALUE OF "NUMIN" HAS TO
C BE GREATER OR EQUAL TO 80
c
c
C LOOP INDEX IS BIG TO ALLOW FOR MORE THAN 80 CHARACTERS
C SINCE WE COUNT DELETE/RUBOUT AS WELL!

DO 100 1=1,000
c
C GET A CHARACTER
C PLACE INTO ICHAR. lEA IS ERROR RETURN, IF NOT EQUAL TO ONE THEN
C EXIT FROM THIS ROUTINE FLAGGING THE ERROR
20 CALL GCHAR(ICHAR, lEA)

IF(IER.NE.1)GOTO 1000
C SEE IF WE HAVE TERMINATION CHARACTER

IF(ICHAR.EQ.13)GOTO 110
C OR A RUBOUT/DELETE

IF(ICHAR.EQ.127)GOTO 50
C ELSE SEE IF IT IS A PRINTABLE CHARACTER- AND IF NOT THEN GET
C ANOTHER INPUT

IF(ICHAR.LT.32.0R.ICHAR.GT.126)GOTO 20
c
C PRINTABLE CHARACTER WAS INPUT. NOW STORE IT IN THE STRING BUFFER,
C INCREMENT INPUT CHARACTER COUNTER AND ECHO CHARACTER ON SCREEN

ISTRING(I)= I CHAR
NUMIN=NUMIN+1
CALL PCHAR(ICHAR, lEA)

C IF AN ERROR HERE THEN EXIT
IF(IER.NE.1)GOTO 1000

C ELSE GET ANOTHER CHARACTER
C IF WE ARE STILL ALLOWED MORE

GOTO 90
c
c
C HANDLE RUBOUT/DELETE
c
C DELETE PREVIOUS CHARACTER (IF THERE WAS ONE!)
50 IF(NUMIN.EQ.O)GOTO 20
c
C BACKSPACE ONE CHARACTER

CALL PCHAR(8,1ER)
IF(IER.NE.1)GOTO 1000

C WRITE A BLANK OVER CHARACTER
CALL PCHAR(32,1ER)
IF(IER.NE.1)GOTO 1000

C BACKSPACE AGAIN
CALL PCHAR(8,1ER)
IF(IER.NE.1)GOTO 1000

C AND DECREMENT INPUT CHARACTER COUNTER
NUMIN=NUMIN-1

C MAKE SURE THIS IS NEVER LESS THAN ZERO
IF(NUMIN.LT.O)NUMIN=O

C GET ANOTHER CHARACTER
GOTO 20

c
90 CONTINUE
C FULL BUFFER?

IF(NUMIN.GE.80)GOTO 110
c

94 JOURNAL OF NUCLEAR MEDICINE TECHNOLOGY

C LOOP BACK TO BEGINNING FOR ANOTHER INPUT
100 CONTINUE
c
C THIS IS WHERE WE GET TO AFTER INPUT STRING HAS BEEN TERMINATED
110 CONTINUE
c
C NOW DECODE AS A REAL NUMBER (AND DO INTEGER TRUNCATION LATER)
c
C EMPTY STRING?- IF SO THEN JUST EXIT

IF(NUMIN.EQ.O)GOTO 900
c
C ELSE DECODE
c
C CHECK IF POSITIVE OR NEGATIVE
C (NCHAR COUNTS CHARACTERS DECODED, I POINTS AT INPUT BUFFER, SIGN
C FLAGS SIGN
c
200 NCHAR=O

1=1
SIGN=1.

C "+"OR"-"?
IF(ISTRING(I).NE.43.AND.ISTRING(I).NE.45)GOTO 210

C IS SO THEN SET SIGN, ELSE PROCEED
NCHAR=NCHAR+1
IF(ISTRING(I).EQ.45)SIGN = -1.
1=2

c
210 CONTINUE

VAL=O.
C BETWEEN "0" AND "9" ?
220 IF(ISTRING(I).LT.48.0R.ISTRING(I).GT.57)GOTO 300
c
C ITEMP HOLDS VALUE DECODED ASCII

ITEMP=ISTRING(I)-48
VAL=10. *VAL+FLOAT(ITEMP)
1=1+1

C TRY ANOTHER CHARACTER FOR DECODE
GOTO 220

c
C DECIMAL POINT?
300 CONTINUE
c

IF(ISTRING(I).NE.46)GOTO 400
c
C ELSE GET DECIMAL PART
C (PROCEED SIMILARLY AS ABOVE)

NCHAR=NCHAR+1
1=1+1

c
350 CONTINUE

c

IF(ISTRING(I).LT.48.0R.ISTRING(I).GT.57)GOTO 400
ITEMP= ISTRING(I)-48
VAL=10*VAL+FLOAT(ITEMP)
POWER=10* POWER
1=1+1
GOTO 350

C SEE IF O.K.
400 CONTINUE
C STRING MUST BE TERMINATED BY 0

IF(ISTRING(I).NE.O)GOTO 900
C ONLY + OR - OR . ?

IF(NCHAR.GE.I)GOTO 900
c
C ELSE MAKE DECIMAL THE VALUE OF THE REAL NUMBER

FNUM=SIGN*VALIPOWER
c
C TRY TO MAKE AN INTEGER (BUT ONLY BETWEEN 32707 AND -32707, ELSE

VOLUME 14, NUMBER 2, JUNE 1986 95

C SET THIS TO ZERO!)
c
C INTEGER WIL BE R 0 U N D E D !

INUM=INT(FNUM+ .5)
IF(FNUM.GT.32767 .. 0R.FNUM.LT.-32767.)1NUM=0

c
C AND NOW PACK THE STRING
900 CONTINUE
C EMPTY STRING?

IF(NUMIN.LE.O)GOTO 1000
c
C PACK IT!- IBPTR POINTS AT OUTPUT BYTE - FUNCTION "BYTE" IS USED
C TO PACK DATA
c

IBPTR=1
DO 950 1=1,NUMIN
BYTE(ISTRING,IBPTR)=BYTE(ISTRING,I*2)
IBPTR=IBPTR+1

950 CONTINUE
c
C AND ZERO OUT THE REMAINDER

DO 960 I=IBPTR,160
BYTE(ISTRING,I)=O

960 CONTINUE
c
C E X I T FROM THIS PROGRAM
1000 CONTINUE
c

c
c

RETURN

C INDICATE PROGRAM END TO COMPILER
c

c
c

END

APPENDIX B
Program for Two-Dimensional Filtering on a 64 x 64 Image

c **

c
C PERFORM 3x3 CONVOLUTION ON A 64x64 IMAGE
c

c
c
c
c
c
c
c
c
c
c

SUBROUTINE SFILT(IDATA, FILKER)

ARGUMENTS:
I DATA
FILKER

64x64 INPUT/OUTPUT ARRAY (INTEGER)
3x3 ARRAY CONTAINING FILTERING KERNEL

COMMENTS: 3x3 CONVOLUTION WILL BE PERFORMED ON ALL PIXELS EXCEPT
PERIPHERAL ONES. THE LATIER WILL BE SET TO THE VALUE OF
THE PIXEL CLOSEST TO THEM.
OUTPUT DATA WILL OVERWRITE INPUT DATA!

C**

c
C DECLARATIONS:

INTEGER IDATA(64,64)
REAL FILKER(3,3), FKSUM, SUM

c
C LOCAL VARIABLES:
C ITMP WILL HOLD LINES TO BE PROCESSED, lOUT WILL HOLD OUTPUT LINE

INTEGER ITMP(64,3),10UT(64)
c
C EXECUTABLE CODE
c

96 JOURNAL OF NUCLEAR MEDICINE TECHNOLOGY

C SUM KERNEL VALUES
FKSUM=O.
DO 20 1=1,3

DO 10 J=1,3
FKSUM=FKSUM+FILKER(I,J)

10 CONTINUE
20 CONTINUE
c
c
C LINES 2 TO 63 (COUNTED BY 'I')
c

DO 200 1=2,63
c
C READ DATA INTO ITMP

DO 120 K=1,3
DO 110 L=1,64
ITMP(L,K)= IDATA(L,I-2+ K)

110 CONTINUE
120 CONTINUE
c
C WRITE OLD lOUT BACK INTO IDATA

DO 125 J=1,64
IDATA(J,I-1)=10UT(J)

125 CONTINUE
c
C PROCESS DATA IN ITMP

DO 150 J=2,63
SUM =0.
DO 140 K=1,3

DO 130 L=1,3
SUM=SUM+ITMP(J-2+L,K)*FILKER(L,K)

130 CONTINUE
140 CONTINUE
C ROUND THE RESULT

IOUT(J)=INT(SUM/FKSUM + 0.5)
150 CONTINUE
C DO FIRST AND LAST COLUMN

IOUT(1)= IOUT(2)
IOUT(64) = IOUT(63)

c
200 CONTINUE
c
C NOW SET FIRST AND LAST LINES

DO 250 1=1,64
IDATA(I,1)=1DATA(I,2)
IDATA(I,64)= I DATA(I ,63)

250 CONTINUE
c
C DONE

RETURN
c

END

APPENDIX C
Simulated Main Program for Performing Image Filtering

c **

c
C PROGRAM IMGFILT
c
C PURPOSE: TO PERFORM 3x3 CONVOLUTION ON 64x64 IMAGE
c
C SUBROUTINES USED:
C GETIMAGE GET IMAGE FROM NUCLEAR DATABASE
C PUTIMAGE PUT IMAGE INTO NUCLEAR DATABASE
C SFILT PERFORM 3x3 CONVOLUTION FILTER
C KEVIN KEYBOARD INPUT HANDLER
c

VOLUME 14, NUMBER 2, JUNE 1986 97

C COMMENTS:
C NAME OF INPUT AND OUTPUT IMAGES, AS WELL AS THE
C VALUES OF THE CONVOLUTION KERNEL WILL BE INPUT BY OPERATOR
c
C THIS ROUTINE WILL ASSUME THAT INPUT IMAGES HAVE ONLY ONE FRAME.
C EXTENSION TO MULTIPLE FRAME IMAGES ARE OBVIOUS.
c
c **

c
C DECLARATIONS:
c
C IMAGE DATABASE NAMES

INTEGER IPNAME(10),0PNAME(10)
c
C ARRAYS TO HOLD IMAGES

INTEGER IMAGE(64,64)
c
C KEYBOARD BUFFERS

c

INTEGER IPROMPT(40),1STRING(40),NUMIN,INUM
REAL FNUM

C FILTER KERNEL
REAL FILKER(9)

c
C EXECUTABLE CODE
c
C GET IMAGE FROM DATABASE
10 CONTINUE

CALL KEYIN("ENTER INPUT IMAGE NAME:",IPNAME,NUMIN,INUM,FNUM,IER)
C ERROR- TRY AGAIN ...

IF(IER,NE.1)GOTO 10
C NULL ENTRY- ABORT PROGRAM

IF(NUMIN.EO.O)GOTO 1000
C ELSE WE HAVE A NAME AND SO TRY AND GET THE IMAGE FROM DATABASE

CALL GETIMAGE(IPNAME,IMAGE,IER)
C ERROR (I.E. IER.NE.1 !)-TRY AGAIN

IF(IER.EQ.1)GOTO 20
TYPE "ERROR....!', lEA, "WHEN ATTEMPTING TO READ IMAGE FROM DATABASE"
GOTO 10

c
20 CONTINUE
C ENTER THE FILTER COEFFICIENTS

TYPE "ENTER THE FILTER COEFFICIENTS IN THE FOLLOWING ORDER:"
TYPE "#1 = (1,1) #2 = (1,2) #3 = (1,3)"
TYPE "#4 = (2, 1) #5 = (2,2) #6 = (2,3)"
TYPE "#7 = (3, 1) #8 = (3,2) #9 = (3,3)"

c
C-------INPUT LOOK

DO 50 1=1,9
c
30 CONTINUE

TYPE "#",1
CALL KEYIN("ENTER COEFFICIENT:",ISTRING,NUMIN,INUM,FNUM,IER)

C TRY AGAIN ON ERROR
IF(IER.NE.1)GOTO 30

C ABORT IF NOTHING ENTERED FIRST TIME AROUND, ELSE START AGAIN
IF(NUMIN.NE.O)GOTO 40

c

c

IF(I.EQ.1)GOTO 1000
GOTO 20

40 CONTINUE
FILKER(I)=FNUM

c
50 CONTINUE
C-------END OF INPUT LOOP
c
C DO THE FILTER

CALL SFILT(IMAGE,FILKER)

98 JOURNAL OF NUCLEAR MEDICINE TECHNOLOGY

c
C AND PUT IMAGE BACK INTO THE DATABASE
60 CONTINUE

CALL KEYIN("ENTER OUTPUT IMAGE NAME:",OPNAME,NUMIN,INUM,FNUM,IER)
C ERROR- TRY AGAIN ...

IF(IER.NE.1)GOTO 60
C NULL ENTRY- RE-DO FROM BEGINNING

IF(NUMIN.EQ.O)GOTO 10
C ELSE WE HAVE A NAME AND SO TRY AND GET THE IMAGE FROM DATABASE

CALL PUTIMAGE(OPNAME,IMAGE,IER)
C ERROR (I.E. IER.NE.1 !)-TRY AGAIN

IF(IER.EQ.1)GOTO 70
TYPE "ERROR_:', IER, "WHEN ATTEMPTING TO WRITE IMAGE TO DATABASE"
GOTO 60

c
70 CONTINUE
c
C COMPLETED
1000 STOP

END

APPENDIX D
Program for Two-Dimensional Filtering on a 64 x 64 Image

c••

c
C PERFORM 3x3 CONVOLUTION ON A 64x64 IMAGE
c

c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE SFILT(IDATAIN, IDATAOUT, FILKER)

ARGUMENTS:
IDATAIN
IDATAOUT
FILKER

64x64 INPUT ARRAY (INTEGER)
64x64 OUTPUT ARRAY (INTEGER)
3x3 ARRAY CONTAINING FILTERING KERNEL

COMMENTS: 3x3 CONVOLUTION WILL BE PERFORMED ON ALL PIXELS EXCEPT
PERIPHERAL ONES. THE LATTER WILL BE SET TO THE VALUE OF
THE PIXEL CLOSEST TO THEM.
INPUT AND OUTPUT DATA ARE IN SEPARATE ARRAYS!

c **

c
C DECLARATIONS:

c

INTEGER IDATAIN(64,64),1DATAOUT(64,64)
REAL FILKER(3,3), SUM, FKSUM

C EXECUTABLE CODE
c
C SUM KERNEL VALUES

FKSUM=O.
DO 20 1=1,3

DO 10 J=1,3
FKSUM=FKSUM+FILKER(I,J)

10 CONTINUE
20 CONTINUE
c
C I COUNTS LINES, J COLUMNS

DO 200 1=2,63
DO 190 J=2,63

SUM=O
DO 140 K=1,3

DO 130 L=1,3
SUM=SUM+ITMP(J-2+L,I-2+K)•FILKER(L,K)

130 CONTINUE
140 CONTINUE
C ROUNDTHERESUIT

IDATAOUT(J,I)=INT(SUM/FKSUM + 0.5)
190 CONTINUE

VOLUME 14, NUMBER 2, JUNE 1986 99

C DO FIRST AND LAST COLUMN
IDATAOUT(1,1)=1DATAOUT(2,1)
IDATAOUT(64,1)= IDATAOUT(63,1)

200 CONTINUE
c
C NOW SET FIRST AND LAST LINES

DO 250 1=1,64
IDATAOUT(I,1)=1DATAOUT(I,2)
IDATAOUT(I,64)=1DATAOUT(I,63)

250 CONTINUE
c
C DONE

RETURN
c

END

APPENDIX E
Drawing Rings on a Graphics Overlay on the Display

Version 1
This method occupies the least space and takes the longest to execute.

c··
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE RING (IXCENTER,IYCENTER,IRADIUS)

PURPOSE:
DRAW A RING 10 PIXELS THICK ON THE DISPLAY (DISPLAY HAS 512x512
PIXEL RESOLUTION).

ARGUMENTS:
IXCENTER
IYCENTER
I RADIUS

X-COORDINATE OF CENTER OF RING ON DISPLAY
Y-COORDINATE OF CENTER OF RING ON DISPLAY
OUTER RADIUS OF RING

NOTE: COORDINATES ARE ASSUMED TO START AT LOWER LEFT HAND CORNER
OF DISPLAY AT COORDINATE (1,1)

SUBROUTINES USED:
WRTPTS WRITE PIXEL COORDINATES TO SCREEN
(READS "N" POINT PAIRS FROM A BUFFER AND INTERPRETS THEM AS X-Y
COORDINATE PAIRS)
FORTRAN SIN AND COS FUNCTIONS (ACCEPTING RADIANS AS ARGUMENTS)

c··
c
C LOCAL BUFFERS

INTEGER ICOORDS(2)
c
C DRAW RING DIRECTLY:
c
C RADIANS PER POINT

RADPP=3.1412/256.
c
C 10 PIXELS THICK

DO 100 1=1,10
TMP1 = FLOAT(IRADIUS-1) • RADPP

C 512 PIXELS ON CIRCUMFERENCE
DO 50 J=1,512

TMP2=FLOAT(J)•RADPP
C X-COORDINATE

ICOORDS(1)=XCENTER+TMP1 •COS(TMP2)
C Y-COORDINATE

ICOORDS(2)=YCENTER+ TMP2 * SIN(TMP2)
CALL WRPTS(1,1COORDS,IER)

50 CONTINUE
100 CONTINUE
c

100 JOURNAL OF NUCLEAR MEDICINE TECHNOLOGY

C FINISH
RETURN

c
END

Version 2
This method occupies - 2,100 bytes more than Version 1, but it will run noticeably faster. The main body of the program only is included here.

c ***•**********

c
C LOCAL BUFFERS

INTEGER ICOORDS(2)
REAL SINES {512),COSINES{512)

c
C RADIANS PER POINT

RADPP=3.1412/256.
c
C CALCULATE SINE AND COSINE LOOKUP TABLE

DO 10 1=1,512
TMP2= FLOAT(I) • RADPP
SINES(I)=SIN(TMP2)
COSINES(I)=COS(TMP2)

10 CONTINUE
c
C CALCULATE CIRCLES
C 10 PIXELS THICK

DO 100 1=1,10
TMP1=FLOAT(IRADIUS-I)•RADPP

C 512 PIXELS ON CIRCUMFERENCE
DO 50 J=1,512

C X-COORDINATE
ICOORDS{1)=XCENTER+TMP1 •COSINES(J)

C Y-COORDINATE
ICOORDS(2)=YCENTER+TMP1 •SINES(J)
CALL WRPTS{1,1COORDS,IER)

50 CONTINUE
100 CONTINUE
c
C FINISH

RETURN
c

END

Version 3
This method occupies - 4,200 bytes more than Version 1, but it will run much faster than either of the preceding methods. The main body
of the program only is included here.

C**

c
C LOCAL BUFFERS

c

INTEGER ICOORDS{1024)
REAL SINES{512),COSINES(512)

C RADIANS PER POINT
RADPP=3.1412/256.

c
C CALCULATE SINE AND COSINE LOOKUP TABLE

DO 10 1=1,512
TMP2=FLOAT{I)•RADPP
SINES(I)=SIN(TMP2)
COSINES(I)=COS(TMP2)

10 CONTINUE

VOLUME 14, NUMBER 2, JUNE 1986 101

C CALCULATE CIRCLES
C 10 PIXELS THICK

DO 100 1=1,10
TMP1 =FLOAT(IRADIUS-1) * RADPP

C 512 PIXELS ON CIRCUMFERENCE
C CALCULATE A FULL RING BEFORE WRITING IT OUT

DO 50 J=1,512
C X-COORDINATE

ICOORDS((J-1)•2+1)=XCENTER+TMP1 •COSINES(J)
C Y-COORDINATE

ICOORDS(J * 2)=YCENTER +TMP1 * SINES(J)
50 CONTINUE

CALL WRPTS(512,1COORDS,IER)
100 CONTINUE
c
C FINISH

RETURN
c

END

APPENDIX F
Glossary of Programming Terminology

Buffer:

Compiler:

Conditional
execution:

(also called array) an area of storage for more than one
number, logical entity, or string that is reserved by the
program.

a program which translates the source code into
machine language, and produces an "object" or
"relocatable binary" file that represents the next stage
towards generating a running program.

execution of a single or a block of statements that
depend on the outcome of a logical test on numerical,
logical, or string variables.

Constant: a symbolic or explicit representation in a program of
a number, logical entity, or string whose content is fixed
and may not be changed by the program during
execution.

Declaration: a statement about the type of data to be stored in a
variable or array for which storage space is to be
allocated in a program.

Linker: (also called "loader") a program that takes as its input
the object file generated by the compiler as well as a
range of required system functions (stored in files
called "system libraries") and produces a program that
can then be run on a given computer.

Loop: a series of statements executed repeatedly that are
subject to the varying conditions imposed on them by
the program.

Source code: (also called "source program") the program entered
by the programmer in such "high-level" languages as
FORTRAN, Pascal or C.

Statement:

Statement
block:

Variable:

102

syntactically valid instruction in the source code of a
FORTRAN program (see Appendix G).

a group of one or more statements that are logically
considered to be a single unit and are delineated by
language-specific markers to indicate the beginning
and end of a block.

a symbolic representation in a program of a number,
logical entity, or string that may have a varying content
as the program executes.

APPENDIX G
FORTRAN Statements*

The first five columns of any FORTRAN statement may be used only
as follows:
1. Column 1 may contain the letter C, in which case the compiler will

ignore everything else in this line.
2. Columns 1-5 may contain a statement number (integer) to be used

as a target for GOTO statements or conclusion of "DO'!.Ioops.
3. Column 6 may contain either a blank or a character. If the latter

is the case, the current statement line is considered to be a con
tinuation of the previous statement line.

4. Columns 7 to end-of-line (usually not more than 80 columns) con
tain the FORTRAN statement for this line (or some comment, if
there is a C in Column 1 of this line).

Note that FORTRAN ignores blanks (the "SPACE" character in the
statement section of a FORTRAN program line).

Statement Meaning

GOTO line Transfer execution to line with number indicated in
number statement.

IF (condition) Execute "statement" if "condition" is true.
statement

CALL
subr(arg list)

DO 1n count=
start, end,
step

CONTINUE

Execute subroutine "subr'' with the arguments in
"arg list."

Execute the block of statements between this state
ment and the statement with line-number "1n" (in
clusive) subject to the following conditions: Set
the loop counter "count" to the value "start" on
first entry.

Increment loop counter by "step" upon each itera
tion of the loop.

Exit from loop if "count" is either greater than "end
ing value" (if "step" is greater than 0), or if
"count" is less than "end" (if "step" is less than
0).

Proceed to the logically following statement.
This statement is used mainly with a preceeding

statement number, serving as a target for
transfer of program execution. In some com
pilers the ends of DO-loops must be indicated
by "CONTINUE."

SUBROUTINE Indicates that the following program is a subroutine
name (list) of "name" with the arguments in "list."

DIMENSION, Examples of type declarations when reserving
INTEGER, storage space for variables or arrays in a program.
REAL, Note that FORTRAN compilers will design default
LOGICAL, types to arrays when "DIMENSION" is used.
DOUBLE, These types will be determined by the first letter
COMPLEX in the name of the variable or array.

*The precise meaning of the terms above may vary from system
to system.

JOURNAL OF NUCLEAR MEDICINE TECHNOLOGY

FORTRAN PROGRAMMING IN NUCLEAR MEDICINE
For each of the following questions select the best answer. Then circle the number on the reader
service card that corresponds to the answer you have selected. Keep a record of your responses
so that you can compare them with the correct answers, which will be published in the next
issue of the Journal.

A. FOKI'RAN is:
142. a basic language.
143. written directly in machine language.
144. a compiled language.
145. all of the above.

B. A ''portable" FOKI'RAN program:
146. cannot be recompiled.
147. is written using common-to-all FORTRAN

statements.
148. is written in advanced code statements.
149. all of the above.

C. The compiler:
150. checks the source program for any errors

detectable at that level.
151. translates the English-type text into machine

language.
152. will request the error correction before

producing the object file.
153. all of the above.

D. Program comments:
154. should be concise statements at the end of

each subroutine.
155. should be an in-line statement of purpose

before each main program or subroutine.
156. need not be included in updated program

versions.
157. all of the above.

E. FOKI'RAN comment lines:
158. do not add to the space of the loaded

program.
159. are ignored by the compiler if preceeded by

the letter "C" in the first column.
160. do not slow down the program in any way.
161. all of the above.

f. The output of the compiler is:
162. a source code file.
163. an object file.
164. a current statement file.
165. none of the above.

VOLUME 14, NUMBER 2, JUNE 1986

G. Most nuclear medicine compilers will have a
host of system-supported for display
and database access.
166. compilers.
167. "library" functions.
168. object files.
169. source files.

H. The keywords in the development of clinical
programs are:
170. documentation and portability.
171. readability and portability.
172. documentation and readability.
173. readability and memory use.

I. "Cosmetic" changes to a working program
may in fact alter the program's overall function,
causing a "bug."
174. true.
175. false.

J. Any line in a FOKJ'RAN program preceded by
a letter "C" is an indication that _____ _
176. the line should be executed twice.
177. the line should be ignored.
178. there is a subroutine call at that line.
179. the line is complete and ready for use.

K. FOKI'RAN compilers may be found on
____ programmable nuclear medicine systems.
180. very few.
181. most.
182. all.

l. FOKI'RAN has virtually of the
convenient BASIC keyboard input/output and string
handling functions.
183. none.
184. all.
185. some.

103

104

Your answers to the above questions should be returned on a reader service card (found in the
back of the Journal) no later than September 1, 1986. Remember to supply your name and address
in the space provided on the card; also, write your VOICE number following your name. Your
VOICE number appears on the upper left hand corner of your Journal mailing label. No credit
can be recorded without it. A 70% correct response rate is required to receive 0.1 CEU credit
for this article. Members participating in this continuing education activity will receive docu
mentation on their VOICE transcript, which is issued in March of each year. Nonmembers may
request verification of their participation but do not receive transcripts.

JOURNAL OF NUCLEAR MEDICINE TECHNOLOGY

