Ectopic Parathyroid Adenoma in the Carotid Sheath

Christopher D Sanders

Jared D Kirkland

Ely A Wolin

David Grant USAF Medical Center, Travis AFB, California

Corresponding author:

Christopher Davin Sanders

101 Bodin Circle, Fairfield CA 94535

707-423-7231/7182

707-423-9184 Fax

christopher.sanders.15@us.af.mil

Word Count: 750

Short Running Title: Carotid Sheath Parathyroid Adenoma
ABSTRACT:

Primary hyperparathyroidism is predominantly caused by a single parathyroid adenoma (1). Knowledge of normal and ectopic locations of parathyroid glands is crucial to help guide surgeons who plan targeted unilateral parathyroidectomy to reduce surgical time and risk. We describe a female patient with clinical primary hyperparathyroidism who underwent a failed initial parathyroidectomy, with subsequent imaging localizing an ectopic parathyroid adenoma in the carotid sheath.

Key Words: hyperparathyroidism, ectopic parathyroid adenoma, Tc99m-Sestamibi

INTRODUCTION:

Given ectopic parathyroid glands are not uncommon in the setting of primary hyperparathyroidism, preoperative localization is critical to current minimally invasive approaches of surgical excision. Knowledge of ectopic locations and appropriate imaging guidelines is imperative.

CASE REPORT:

Our patient was clinically diagnosed with primary hyperparathyroidism (PHPT) after workup for incidental hypercalcemia. Dual-phase Tc99m-Sestamibi scintigraphy with early SPECT/CT, demonstrated uptake posterior and lateral to the superior left thyroid (Fig. 1, 2). Neck ultrasound (US) was unremarkable.

Excision of the left superior parathyroid gland led to no change in intra-operative parathyroid levels. The surgeon proceeded with left hemithyroidectomy and bilateral explorative dissection, with no abnormal tissue on pathology.
Post-operative MRI did not prospectively identify a parathyroid adenoma. Repeat dual-phase parathyroid scintigraphy confirmed persistence of the adenoma. Repeat SPECT coregistered with a dedicated neck CT localized the adenoma to the left carotid sheath (Fig 3, 4).

Repeat surgery removed a pathology proven parathyroid adenoma from the left carotid sheath.

DISCUSSION:

PHPT is a clinical diagnosis, based primarily on laboratory results, usually diagnosed in the 5th-7th decade (1). Hypercalcemia, the primary clinical abnormality, can present with numerous symptoms including bone or abdominal pain, nephrolithiasis and psychiatric imbalances (1). Etiologies include single parathyroid adenoma, multi-glandular hyperplasia, multiple adenomas, and rarely parathyroid carcinomas (1). Surgical excision of abnormal parathyroid tissue is usually curative. Historically, bilateral cervical dissection was performed with 95% success (1). Preoperative imaging localization, however, allows for focused surgeries, reducing procedure length and risk (2).

Usually, two superior and two inferior parathyroid glands are immediately posterior to the thyroid. Ectopic parathyroid glands exist in numerous locations between mouth and diaphragm, with a frequency of 6-16% (3). Ectopia in the carotid sheath, as with our patient, is reported in <1% of cases (2).

Our institution performs a dual-phase Tc99m-Sestamibi protocol, with planar images obtained at 20 and 150 minutes, plus SPECT/CT at 20 minutes for improved localization (5). The initial exam was limited by reduced spatial resolution of the coregistered low dose cone beam CT; subsequent coregistration with high-resolution CT proved invaluable. Four-dimensional CT, along with US and MRI, can also improve preoperative localization (4).
CONCLUSION:

Because focused unilateral parathyroidectomy is curative in most cases of PHPT, with less surgical time and risk, preoperative localization is crucial. Frequently, the clinical question focuses on whether or not there is an adenoma, which is readily answered with planar scintigraphy alone. However, advanced imaging, with better anatomic localization and spatial resolution, is extremely helpful. The initial surgical failure in this case may have been prevented if the initial CT was higher resolution or if ectopia was questioned due to localization posterior and lateral to the thyroid.

DISCLOSURE:

No conflict of interest. The views expressed in this paper are those of the author(s), and do not reflect the official position of the U.S. Government, the Department of Defense, or the Department of the Air Force.
REFERENCES:


FIGURE 1. Tc99m-Sestamibi images demonstrate persistent focal uptake in the left neck.
FIGURE 2. SPECT/CT data localizes uptake posterior and lateral to the superior left thyroid gland.
FIGURE 3. CECT demonstrates soft tissue lesion in the left carotid sheath.
Figure 4. Fused SPECT/high-res CT localizes uptake to a soft tissue lesion in the left carotid sheath.
Ectopic Parathyroid Adenoma in the Carotid Sheath

Christopher Davin Sanders, Jared D Kirkland and Ely A Wolin

Published online: February 4, 2016.
Doi: 10.2967/jnmt.115.170993

This article and updated information are available at:
http://tech.snmjournals.org/content/early/2016/02/04/jnmt.115.170993

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://tech.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNMT can be found at:
http://tech.snmjournals.org/site/subscriptions/online.xhtml

JNMT ahead of print articles have been peer reviewed and accepted for publication in JNMT. They have not been copyedited, nor have they appeared in a print or online issue of the journal. Once the accepted manuscripts appear in the JNMT ahead of print area, they will be prepared for print and online publication, which includes copyediting, typesetting, proofreading, and author review. This process may lead to differences between the accepted version of the manuscript and the final, published version.