Incidental liver findings in Tc-99m sestamibi myocardial perfusion SPECT

Andrea De Lorenzo, MD, PhD
Pedro Gomes da Cruz Netto, MD
Paulo de Sa Villela Pedras, MD, MSc

Universidade Federal do Rio de Janeiro
Rio de Janeiro, RJ Brazil

Corresponding author: Andrea De Lorenzo
Av Brigadeiro Trompowsky s/n- Ilha do Fundão
Rio de Janeiro, RJ Brazil
ZIP 21941-913
Phone 55 21 39382339
andlorenzo@hotmail.com

Running title: extracardiac findings in cardiac SPECT
Abstract

In cardiac nuclear imaging, the liver is mostly remembered as a source of artifact in the left ventricular inferior wall. However, the liver may eventually display unexpected findings which draw attention to significant noncardiac disease. In a patient referred for myocardial perfusion SPECT to investigate atypical chest pain, focal areas of increased tracer uptake revealed intra-hepatic biliary dilatation.

Keywords: myocardial perfusion SPECT; Tc-99m sestamibi; hepatobiliary; diagnosis

Introduction

Although the use of nuclear techniques for the diagnosis of biliary disorders is not new, as cholescintigraphy was once considered the noninvasive procedure of choice for the evaluation of biliary tract function, nuclear imaging of the biliary system is nowadays left for selected cases (1). The biodistribution of Tc-99m sestamibi, with accumulation in the liver (2), makes the hepatic image in myocardial perfusion SPECT a common source of artifact, creating either “hot” spots or false perfusion defects in the left ventricular inferior wall (3). On the other hand, this biodistribution enables the detection of incidental hepatobiliary abnormalities.

Case Report

A 63-year old woman with atypical chest pain was referred for myocardial perfusion SPECT. She reported prior surgical intervention in the pancreas due to pancreatitis secondary to severe hypertriglyceridemia. No follow-up regarding the abdominal intervention had been performed for several years.

A same-day, rest/dipyridamole stress (370 MBq/1110 Mbq) Tc-99m sestamibi myocardial perfusion SPECT study was performed. Images were obtained in a dual-head camera (Millenium MG,
GE Healthcare, Milwaukee, WI). Rest acquisition started 30 min after tracer injection. Post-dipyridamole images were obtained 45 min after injection. Figure 1 shows scintigraphic findings. There were several areas of increased focal uptake in the liver, both at rest and after stress. Myocardial perfusion was considered overall normal, with a mild anteroapical perfusion defect which was interpreted as breast attenuation in view of normal thickening and wall motion.

After the nuclear scan, further investigation of the liver abnormalities was indicated. The patient underwent abdominal CT scan (Figure 3), which revealed multiple intra-hepatic biliary tract dilatations. The focal areas of increased tracer uptake in the scintigraphic images were therefore attributed to bile stasis within biliary tract dilatations. The patient was therefore referred for specialized, surgical follow-up. Laboratory evaluation showed serum bilirubin values within the normal range (total, direct and indirect bilirubin od 1.2, 0.1 and 1.1, respectively), amylase 21 U/L, lipase 36 U/L, alkaline phosphatase 779 U/L, gamma glutamyl transferase 659 U/L, fasting glucose 359 mg/dl, and triglycerides 2740 md/dl. As the patient was stable in relation to the hepatobiliary condition, no further intervention was performed. Her follow-up was noteworthy only for frequent episodes of severe hyperglycemia needing admission for glycemic control despite the domiciliary use of insulin.

Discussion

The case illustrates the importance of careful inspection of raw images when analyzing myocardial perfusion scintigraphy. Eventually, extracardiac findings may point towards significant subclinical disease. In this case, the biodistribution of Tc-99m sestamibi enabled the detection of biliary abnormalities, as tracer excretion into the biliary system occurs as long as liver uptake of Tc-99m sestamibi decreases, 30-60 minutes after injection (2,4).

Conclusions

In cardiac nuclear imaging, attention must be given to extracardiac findings, as these may
uncover relevant pathology. Early diagnosis of disease may have important clinical implications, with impact on the patient’s prognosis.

References


Figure 1. Tc-99m sestamibi myocardial perfusion SPECT images showing several areas of increased uptake in the liver. Left: Post-stress images. Right: Rest images.
Figure 2. Abdominal CT scan showing multiple dilatations of the intra-hepatic biliary tract (arrows). The liver had normal size and parenchyma, while the gallblader was not visualized. A biliodigestive bypass was found, with an anastomosis of the common bile duct to the duodenum (not shown in the Figure).
Incidental liver findings in Tc-99m sestamibi myocardial perfusion SPECT

Andrea De Lorenzo, Pedro Netto and Paulo Pedras

Published online: June 25, 2015.
Doi: 10.2967/jnmt.115.158451

This article and updated information are available at:
http://tech.snmjournals.org/content/early/2015/06/24/jnmt.115.158451

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://tech.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNMT can be found at:
http://tech.snmjournals.org/site/subscriptions/online.xhtml

JNMT ahead of print articles have been peer reviewed and accepted for publication in JNMT. They have not been copyedited, nor have they appeared in a print or online issue of the journal. Once the accepted manuscripts appear in the JNMT ahead of print area, they will be prepared for print and online publication, which includes copyediting, typesetting, proofreading, and author review. This process may lead to differences between the accepted version of the manuscript and the final, published version.