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The emergence of artificial intelligence (AI) in nuclear medi-
cine and radiology has been accompanied by AI commenta-
tors and experts predicting that AI would make radiologists,
in particular, extinct. More realistic perspectives suggest sig-
nificant changes will occur in medical practice. There is no
escaping the disruptive technology associated with AI, neu-
ral networks, and deep learning, the most significant perhaps
since the early days of Roentgen, Becquerel, and Curie. AI is
an omen, but it need not be foreshadowing a negative event;
rather, it is heralding great opportunity. The key to sustain-
ability lies not in resisting AI but in having a deep understand-
ing and exploiting the capabilities of AI in nuclear medicine
while mastering those capabilities unique to the human
resources.
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Artificial intelligence (AI) is a general term used to
describe algorithms designed for problem solving and rea-
soning. Applications in nuclear medicine and radiology
have been widely documented. A subset of AI is associated
with neural networks. In medical imaging, a neural network
is an image analysis algorithm composed of layers of con-
nected nodes (1). The nodes can be in the order of hundreds
to millions and simulate the neuronal connections of the
human brain (2). Nodes receive information from other nodes
or patterns of nodes. Communication from one node to other
nodes occurs when a threshold is exceeded, and the outputs
from those nodes are weighted (Fig. 1). The basic principle is

to maximize the number of correct answers by comparing
artificial neural network (ANN) estimates with a reference
(grounded truth) and then adjusting the weightings on each
node based on the error (2,3). There may be hundreds or
thousands of iterations required to make the adjustments
during the training phase of developing an ANN. Clearly,
the more data that are used to train the ANN, the greater the
accuracy of the inference phase. Through each iteration and
subsequent adjustment of the nodes, a mathematical solution
converges on a more accurate solution in a similar manner to
what we might think about iterative reconstruction of SPECT
and PET data.

An ANN typically has 3 phases: the training phase, in
which the ANN learns; the validation phase, in which the
learning of the ANN is evaluated against a second dataset;
and the inference or application phase, in which the ANN
is applied to actual cases. The training phase follows a
diminishing-return principle, eventually reaching a point at
which additional iterations do not improve the results or the
improvement is negligible (Fig. 1) (2). The training phase
can be supervised (grounded truth, or human-interpreted
training data) or unsupervised (no grounded truth, or learn-
ing based on pattern recognition) (4). After the training
phase, a second dataset can be used to test the accuracy
of inferences of the ANN to validate the algorithm before
it is used in clinical and research applications (Fig. 1). The
role of big data in medical imaging is to provide a reliable
and large training database for machine-learning (ML), rep-
resentation-learning, and deep-learning (DL) algorithms to
produce accurate outcomes (1). There are, however, poten-
tial clinical and research roles for ANNs in parallel to con-
ventional statistical analysis in small data to identify key
inputs (features) or combinations of inputs not gleaned from
multivariate analysis.

In the testing and validation phase, a second smaller data-
base of features or images is used for the ANN to evaluate,
and those inferences are compared with a grounded truth
(Fig. 2). This phase predicts the accuracy of the ANN when
used clinically or in research (5,6). That degree of accuracy

Received Jun. 13, 2019; revision accepted Aug. 5, 2019.
For correspondence or reprints contact: Geoffrey Currie, Charles Sturt

University, P.O. Box U102, CSU, Wagga Wagga, NS 2650, Australia.
E-mail: gcurrie@csu.edu.au
Published online Aug. 10, 2019.
COPYRIGHT© 2019 by the Society of Nuclear Medicine and Molecular Imaging.

ANATOMY OF ML AND DL • Currie 273

mailto:gcurrie@csu.edu.au


can then be expected in the application phase, in which the
neural network makes inferences about images without a
grounded truth (Supplemental Fig. 1; supplemental materials
are available at http://jnmt.snmjournals.org). An ANN would
have data or features entered into the input layer of the algo-
rithm as depicted in Figure 1.
DL associated with convolutional neural networks (CNNs)

has a higher-order functionality in which the neural net-
work itself is trained to identify and extract features from
images (Fig. 2) (7). The term convolution means the math-
ematical combination of 2 functions to generate a third
function. As depicted in Figure 2, the input has several
image dimensions (x, y, and z) and several images (e.g.,
SPECT slices). The image itself has specific features iden-
tified and extracted into a convolution feature map (7). A
kernel or rectified linear unit is an activation filter through
which convolution data are pooled (7). Multiple convolu-
tion, kernel, and pooling iterations may occur before the
pooled features are flattened for entry into the input layer of
the fully connected neural network (7). The depth of the
CNN gives rise to the expression deep learning.

ANATOMY OF ML

ML algorithms, including ANNs, have 3 key components
(6,8). The first is the mathematical model that is used to
describe or explain the relationships within the data; spe-
cifically, the relationships between inputs (features) and
outputs (outcomes). The second component is the cost func-
tion, which is an evaluation of the accuracy of the mathe-
matical model, or how well the model predicts an outcome.
The error between the predicted and expected outcomes
(grounded truth) is the loss function. The third component,
the data, is necessary but varies among the training phase,
the validation phase, and then the inference phase. Big data
from multicenter trials may be used for the training phase,
and a smaller number of cases with known outcomes can be
used for the validation phase. Typically, the same database
is used and randomly split (e.g., 80:20) to produce a large
training set and a smaller but statistically significant vali-
dation set. A separate population of patients can then be
used as the inference phase for further research (deeper
validation with external validity) or for clinical decision
making.

FIGURE 1. The training phase of a neural network using extracted features as inputs. The grounded truth defines the ANN as a
supervised ANN. This ANN structure is also what might be used as an analysis tool in parallel with traditional statistical analysis—
importing data from a spreadsheet, for example. This example, which depicts all nodes as being connected to all others in adjacent
layers, represents “fully connected layer,” which is more typical of CNNs. The validation phase evaluates trained ANN against a new
database of known cases to determine accuracy. (Adapted from (1).)
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There are a variety of ML algorithms available, and the
preferred approach (e.g., CNN vs. ML) will depend on
the type of data and the purpose. For simplicity, the
following discussion will assume a binary output (e.g.,
cardiac event or no cardiac event) and rich input data of
extracted features in a model that resembles Figure 1. One
should keep in mind that this is a model meant for aiding the
understanding of nomenclature and processes rather than
being a fit for all ANNs, just as human anatomy has normal
variants and differs among mammals despite having some
commonality.
Consider several potential input features (e.g., 4) in 1,000

patients in a database. A single binary output might be a
cardiac event during the follow-up period or no cardiac
event in the follow-up period. The ANN architecture would
include 4 scaling-layer inputs and several hidden (percep-
tion) layers (let us assume 4) with multiple nodes in each
hidden layer (perhaps 4, 8, 8, and 3) (Fig. 3). The scaling
layer is to ensure all inputs are within the prescribed range
and contain input statistics (e.g., mean, SD, minimum, and
maximum). Each node (perceptron) in the perception
layers receives numeric inputs, which have weightings and
are combined with a bias to produce a single net input value
(8,9):

Combination 5 bias1+weights � inputs:

An activation function defines the output of the perceptron
(liner, logistic, rectified linear, hyperbolic tangent) (5,7,9,10).
In the case of a linear activation function, the activation is

equal to the net input value (5,7,9,10). The more common logis-
tic activation function is a sigmoid function:

Activation 5
1

11 e2combination
:

The ANN works toward a probabilistic layer (e.g., binary,
continuous, competitive, or softmax) or probabilistic output
function. Between the last perception layer and the proba-
bilistic layer, an unscaling layer is needed to convert outputs
to the original units (8–10).

The architecture needs to be trained and optimized. The
loss index is a tool used to measure the error associated with
the algorithm executing its task (error term) and to measure
the quality of the data the ANN is learning (regularization
term) (5,7,8,10,11). The error term can be measured in nu-
merous ways, including mean squared error, normalized
squared error, weighted squared error, or Minkowski error
(9). The weighted squared error could be used to determine
the loss index, especially when there is an imbalance be-
tween positive and negative outputs (e.g., a ratio of 1.2:1
against grounded truth). Regularization relates to the size
of changes in outputs in response to changes in inputs, with
small changes producing small changes being considered
regular. The regularization term is summed with the error
term, which will reduce weights and biases to produce a
smoother output (9,10).

Optimization is an adjustment to the weightings on
individual nodes (perceptrons) in order to minimize (opti-
mize) the loss index (5,8–10). This optimization is achieved

FIGURE 2. Basic structure of a CNN, with the network extracting radiomic features, producing convolution function, pooling data
through rectified linear unit (ReLU) kernel, and flattening pooled feature map for input into fully connected hidden layers of the
neural network. (Reprinted from (1).)
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using an iterative process of successive adjustments to the
weightings. Gradient is the rate of inclination or declination
(slope) and represents the learning rate. Gradient descent is
an optimization method that evaluates a progressive dimin-
ishing rate of learning with each iteration (5,9–11). That is,
the cost function is decreasing, which means the loss is
decreasing and the minimum point could be used to terminate
the cycle (before loss starts to increase again) (5,7,8,10,11).
Large datasets may not be able to be processed concur-
rently, requiring division of the data. An epoch refers to
the entire dataset being passed forward (forward propaga-
tion) and backward (back propagation) through the ANN
once. This process is often referred to as an iteration, and
for small datasets an iteration and an epoch are the same. In
larger datasets, the data may need to be broken into batches
of smaller units. Each forward propagation and back prop-
agation of a batch through the ANN is an iteration. Passage
of all batches through once is an epoch. For the dataset of
1,000 patients, the data may need to be broken into batches
of 200, resulting in 5 batches requiring 5 iterations to
complete 1 epoch. The optimization algorithm, therefore,
changes parameters between successive epochs (parameter
increment) to minimize the loss index until a specified con-

dition is met (e.g., minimum value is reached, margin loss im-
provement equals a set value, gradient equals a preset value,
maximum number of epochs is reached, maximum time is
reached) (5,10). The optimization algorithm itself defines how
parameters are optimized (9,10). The Newtonian method is
computationally demanding but more accurate, using the
Hessian of the loss function (second-derivative matrix) (9).
A quasi-Newtonian method may be a preferred option, and
this approach uses gradient information to estimate the in-
verse Hessian (mathematical function using a square ma-
trix of second-order partial derivatives) for each iteration of
the algorithm, ignoring second derivatives and reducing com-
putational demand. Other approaches include gradient de-
scent, conjugate gradient, Levenberg–Marquardt algorithm,
stochastic gradient descent, and adaptive linear momentum.
The loss function associated with the training phase esti-
mates the error associated with the prediction and the
grounded truth for the dataset (5,9,10). The selection loss
is an error measure of the ANN’s generalizability to new data,
or agility. These loss functions can be used to optimize the
number of hidden layers or iterations in the final architecture.

The final architecture of the ANN or model selection needs
to consider selection loss, or minimize the error associated

FIGURE 3. Anatomy of an ANN. Single node (C) can have multiple inputs (X) with different weighting factors (W) and bias (B)
but single output (Y) via activation function (A). Multiple lines exiting each node are same output being delivered to multiple next-
layer nodes.
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with the order and range of inputs (5,7,9,10). Order selection
relates to the depth of the ANN, or its influence on the
output and its accuracy, by defining the number of nodes
in hidden layers (5,9,10). It is important to balance the
order selection with the complexity of the data to avoid
under- or overfitting (Fig. 4A) (4). Similarly to the train-
ing error, the selection error measures the accuracy of the
ANN applied to new data (generalizability) (5,9,10). An
incremental order-selection algorithm starts by measuring
selection loss for a small number of nodes and incremen-
tally adds nodes until the selection loss is optimized
(meets a predetermined value). Conversely, a decremental
order algorithm starts by measuring selection loss for a
large number of nodes and incrementally removes nodes
until the selection loss is optimized (meets a predetermined
value). In this case, knowing the low complexity of data,
the user has elected to begin with a more complex ANN
than necessary, which will see the decremental order algo-
rithm reduce the complexity in the ANN.
Input selection (Fig. 4B) defines which specific features

should be included in the ANN inputs. The input selection
algorithm determines which input features produce the
smallest selection error and, thus, provide the best general-
izability for the ANN to new data (5,9,10). There are
several algorithms that can be used. The pruning method

starts with all inputs and incrementally removes inputs
with the lowest correlation until the selection loss starts
to rise. A growing-input method can also be used to cal-
culate the correlation for every input against each output
in the dataset. Beginning with the most highly correlated
inputs, inputs are incrementally added to the network until
the selection loss increases. The final architecture of the
neural network reflects the optimized subset of inputs and
order with the lowest selection loss (Supplemental Fig. 2).

Several metrics can be used to test the errors in the neural
network. The final architecture can then be evaluated using
several tests for robust validation using a second set of data
(or a validation partition of the original dataset) (9,10). The
loss index for the final ANN can be calculated by compar-
ing the prediction output with the grounded truth (7). Sev-
eral tools are used in combination for validation, such as
sum squared error, mean squared error, root mean squared
error, normalized squared error, Minkowski error, cross
entropy error, hinge error, and linear regression analysis.
Receiver-operating-characteristic analysis produces an area
under the curve that correlates with a sensitivity and spec-
ificity (9,10). This correlation is further reflected in the
confusion matrix (true positives, true negatives, false neg-
atives, and false positives). ANN performance may also
be expressed or displayed as cumulative gain (benefit of

FIGURE 4. (A) Schematic representation of good fit vs. under- and overfitting associated with selection loss. (B, left) Optimization
of selection loss to determine ANN complexity and node number (order) using decremental order algorithm, with arrow indicating
reasonable cutoff for total node number. (B, right) Optimization of selection loss to determine inputs (features) to be included using
growing-input algorithm, with arrow indicating reasonable cutoff for inputs.
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using the ANN over a random guess), lift chart (ratio of
positive events using the ANN to those without the ANN),
conversion rates (percentage of predicted cases with and
without the ANN), and profit chart (ANN gain over ran-
dom guess). Much of the literature on ML applications in
nuclear medicine and radiology are in some way the val-
idation phase of the ANN. This may include statistical anal-
ysis of the ANN capability against human interpretation
and a gold standard. It may also include an evaluation of
the predicted gain in economic or health outcome terms
with and without the ML model. After validation, the ML
algorithm can be implemented by exporting and applying
the mathematical model. For simple ML and ANN models,
this may represent an export of the mathematical expression
in simple code language such as Python for incorporation in
mobile device apps or websites.
An example of this application is previous work with

123I-metaiodobenzylguanidine radionuclide imaging in
heart failure. Traditional analysis with multivariate ap-
proaches demonstrated that regional washout associated
with territories adjacent to infarcted myocardium was su-
perior to traditional planar approaches to uptake and
washout in predicting cardiac events. Subsequently, the
same data were evaluated using an ANN in the method
described above using 84 input variables and a single bi-
nary output (cardiac event or no cardiac event in the fol-
low-up period). Training and validation phases optimized
the number of inputs at just 2: a decrease in left ventricular
ejection fraction (.10%) and 123I-metaiodobenzylguani-
dine planar global washout (.30%) (12,13). The ANN in

this case revealed predictive capability not illuminated by tra-
ditional regression methods, highlighting the value of ANN
and ML in parallel to conventional statistical analysis.

ANATOMY OF A CNN

With the general principles of an ANN outlined above,
scaffolding a deeper insight into the CNN process might be
of value. As outlined in Figure 2, a CNN comprises con-
volution and pooling layers and the fully connected layers
of a neural network. The CNN differs from the ANN de-
scribed in Figure 3 in that the features are extracted from
the images and the output is some form of classification (7).
As described below, the CNN transforms 2-dimensional
image data through forward propagation but can also be
applied to 3-dimensional datasets such as SPECT and PET
(7,11).

Convolution is the extraction of image features using a
linear operation that applies a kernel (typically 3 · 3) to a
subset array of image elements (pixels) or input tensor (Fig.
5) (5,7–9,11,14). This process is not dissimilar to the ap-
plication of a 9-point smoothing filter to planar images in
nuclear medicine. The kernel is positioned over elements in
the input tensor, with the distance between each successive
position representing the stride (5,7–9,11,14). A stride of 1
means that the kernel is centered over each element of the
input tensor, whereas a stride of 2 indicates centering over
every second element of the input tensor. This down-sam-
pling of feature maps with strides greater than 1 can be
better achieved in the pooling function (5,7–9,14). The
product of the individual elements of the input tensor and

the kernel are summed to produce a
single numeric value (and position or-
dinates) into the feature map (output
tensor) (5,7–9,14). A variety of kernels
can be applied in a stepwise manner
producing several convolution layers
(Fig. 2). Of importance in convolution
is that although the x and y dimensions
of the input tensor are compressed, the
z dimension does not change. The
postconvolution feature map is then
passed through a nonlinear activa-
tion function that, as previously de-
scribed, is typically the rectified linear
unit, before entering the pooling layer
(5,7–9,14).

Pooling reduces the in-plane (x, y)
dimensionality of feature maps by apply-
ing a down-sampling operation (5,7–
9,11,14). Max pooling and global average
pooling are 2 common approaches. As
the name suggests, max pooling creates
an output equal to the maximum value
within a patch of data in the feature
map (5,7–9,14). A 2 · 2 filter with a
stride of 2 means that each set of 4

FIGURE 5. Convolution uses 3 · 3 kernel to run sequential (in this case, successive,
to provide stride of 1) 3 · 3 array of elements. Weighted sum of kernel for 3 · 3 input
tensor creates single representative value in feature map. Multiple feature maps are
produced by different kernels.
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elements is represented as a single value equal to the max-
imum value and all other data are discarded (Fig. 6).
Global pooling, on the other hand, represents a feature
map as a single value equal to the mean of the element
values, essentially down-sampling a feature map to a 1 · 1
array (5,7–9,14). Global pooling is typically applied once,
immediately before the fully connected layers; however,
the max pooling method is more common (5,7–9,11,14).
Multiple sequential convolution, kernel, and pooling processes
produce layers of data that are transformed into a 1-directional

array of vectors (numbers) through a pro-
cess called flattening (5,7,11).

A parameter is a variable automat-
ically learned by the CNN, whereas
a hyperparameter is a variable that
needs to be set (7). These vary in the
different layers of the CNN (Fig. 7).
In the convolution layer, kernels are
the parameter, and kernel size, kernel
number, stride, and activation function
are the hyperparameters. The pooling
layer has no parameters, but the pool-
ing method, filter size, and stride are all
hyperparameters. The fully connected
layer of nodes uses weights as the pa-
rameters, whereas the activation func-
tion and the number of weights are the
hyperparameters.

There are a wide variety of appli-
cations of CNN and DL in nuclear
medicine, but application of a CNN

has been effectively demonstrated in recent dementia
studies. SPECT images with known outcomes were used
to train a CNN to evaluate the images themselves and
identify key features—specifically, the cingulate island sign
indicative of dementia with Lewy bodies (15). Perhaps a
more important approach would be the use of a CNN
trained to identify specific features on the images them-
selves indicating findings of an urgent nature—pulmonary
embolism on a lung scan, for example. Rather than the
CNN’s providing a definitive diagnosis, a list-based report

FIGURE 6. Pooling using max pooling method and 2 · 2 array produces pooling of
maximum count among 4 connected elements (patch) to represent those data in
pooled feature map. Use of consecutive blocks of 2 · 2 elements means stride of
2. Final pooled feature map immediately before input into neural network can then be
flattened from 2-dimensional data into single dimension; this approach avoids need
for global pooling.

FIGURE 7. CNN will have several convolution and pooling layers before flattening and input to neural network. Several kernels
can be used on same input tensor to produce layers of feature maps via rectified linear units (ReLU) for pooling and eventually flattening.
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could be initiated and the findings used to triage a positive
outcome to the front of the reporting list. Clearly, a CNN
could be readily trained to identify features to drive auto-
mated segmentation or region identification, and this ability
may have significant applications in radiation dosimetry
(16).
However, a degree of caution is required with applica-

tion of DL and CNNs. Although a CNN can identify features,
or relationships between features, in a large volume of data
not possible for a human observer, unsupervised learning
may see unusual features identified. For example, consider a
CNN trained to identify pulmonary embolism on a lung scan.
If that CNN were shown to be more accurate than a human
observer in detecting pulmonary embolism, it makes sense
that the CNN has identified features not typically considered
by the human observer. This should prompt enquiry to edu-
cate the human observer about previously unconsidered
features. In theory, the entire process improves. It may, how-
ever, reveal that instead of identifying features in the lung
fields themselves, the CNN has learned other features that
strongly correlate with pulmonary embolism: electrocardi-
ography leads in situ, annotation indicating referral from
emergency, patient age or sex. Anecdotal discussion at
conferences revealed that a CNN to detect pneumonia on
chest radiographs was making decisions based on whether
the study was performed in the department or by a mobile
radiography unit.

DISCUSSION

Despite an emergence of medical literature outlining the
applications of DL and CNNs in nuclear medicine and
radiology, AI, ML, ANNs, and CNNs afford numerous
opportunities besides those mentioned in the literature.
There are several key areas in which AI, ML, ANNs, or DL
has been successful or potentially impactful in radiology
(2,3,17), and these are equally apt for nuclear medicine:

• Prediction of positivity rate among similar patients to inform
diagnostic decision trees and optimize procedure choice.

• New image reconstruction methods that produce im-
ages from lower-radiation-dose studies (e.g., PET and
SPECT); generation of pseudo-CT for attenuation cor-
rection or with reduced imaging time (e.g., MRI).

• Quality assessment algorithms built into systems to
improve image quality and decrease repeat studies.

• Image-triage algorithms that identify cases likely to be
positive or that may have an urgent finding, allowing
prioritization of reporting and earlier intervention.

• Computer-aided detection, automated image annota-
tion, and information extraction.

• AI methods that explain analysis and interpretation and
provide preliminary reporting.

• Lesion or disease detection (enhanced computer-aided
detection) and classification.

• Automated segmentation, identification and extraction
of features from images (radiomics), and quantitation.

Detection of incidental findings is an important potential
application of AI and ANNs not generally discussed in the
literature but readily expressed in a mathematical algorithm
(variation from normal). The emergence of the important
role of radiation dosimetry modeling in radionuclide therapy
will elevate precision nuclear medicine and theranostics, no
doubt unveiling an important application of AI and ANNs.

The future of AI is promising and looks beyond DL.
Patrick Ehlen from Loop AI Labs explained in 2018 at
a conference in Cologne, Germany (https://www.loop.ai/ai-
the-end-of-deep-learning?contentid51302036), that the next
generation of AI will go beyond DL. He used the liar para-
dox from Star Trek to highlight that AI is trained to solve
problems logically. The human brain not only is capable of
logical thought but also operates in the sphere beyond logic
(an agility known as super logic, or sometimes referred to as
illogical). The simple liar paradox of AI’s interpreting 2
pieces of information, the first being ‘‘everything Harry tells
you is a lie’’ and the second coming from Harry saying, ‘‘I
am lying,’’ defies first-order logic (https://www.youtube.com/
watch?v5QqCiw0wD44U). Higher-order logic that would
prevent AI from being outwitted by human super logic re-
quires a framework of quantum-based logic. Although a tu-
torial on quantum computation is beyond the scope of this
article (18), the basic premise is that AI does not understand
pragmatics. Humans process the contrasting context associ-
ated with pragmatism. These different foundation contexts
could be seen as different basis vectors in quantum proba-
bility theory and allow AI to develop higher-order reasoning
and problem-solving skills. The differentiation of imitation
of human thought (AI) and manufactured but authentic in-
telligence gives rise to the concept of synthetic intelligence
(SI). This capability has the potential to make dramatic steps
in interpretation of complex images and pathologic states
associated with PET, SPECT, MRI, and CT. The field of
nuclear medicine and radiology has its strength in making
clinical judgments and decisions based on data and feature
extraction, not in the feature extraction or analysis itself (19).
Thus, AI techniques such as ML and DL provide an oppor-
tunity to enhance the accuracy and efficiency of the physi-
cian or radiologist without threatening redundancy. AI may
represent a shift in practice; AI has a high degree of capa-
bility in rudimentary tasks—tasks that will thus be lost to the
radiologist or physician, but this loss simply provides more
time for the radiologist or physician to focus on the higher-
order semantic tasks that are beyond, but enhanced by, the
capabilities of AI. On the surface, this is a strong argu-
ment against the idea that AI may make the physician or
radiologist redundant. Quantum logic in SI may renew
that debate.

CONCLUSION

AI has penetrated the daily practice of nuclear medicine
over recent decades with little disruption. The emergence
of ANNs and CNN applications has seen the landscape
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undergo a significant shift whose opportunity outweighs the
threat. Nonetheless, understanding of the potential applica-
tions and the principles of AI, ANNs, and DL will equip
nuclear medicine professionals for ready assimilation,
averting the doomsday fears permeating radiology. Counter
to the concerns among radiologists, in nuclear medicine the
disruptive potential of the technology is perhaps of greatest
impact on technologists and physicists rather than physicians;
those of us most likely to develop and apply AI, ML, and DL
in the research and clinical environment.
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