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Iterative reconstruction has become the standard for routine
clinical PET imaging. However, iterative reconstruction is com-
putationally expensive, especially for time-of-flight (TOF) data.
Block-iterative algorithms such as ordered-subsets expectation
maximization (OSEM) are commonly used to accelerate the re-
construction. There is a tradeoff between the number of sub-
sets and reconstructed image quality. The objective of this work
was to evaluate the effect of varying the number of OSEM sub-
sets on lesion detection for general oncologic PET imaging.
Methods: Experimental phantom data were taken from the Utah
PET Lesion Detection Database, modeling whole-body onco-
logic 18F-FDG PET imaging of a 92-kg patient. The experiment
consisted of 24 scans over 4 d on a TOF PET/CT scanner, with
up to 23 lesions (diameter, 6–16 mm) distributed throughout the
thorax, abdomen, and pelvis. Images were reconstructed with
maximum-likelihood expectation maximization (MLEM) and
with OSEM using 2–84 subsets. The reconstructions were re-
peated both with and without TOF. Localization receiver-oper-
ating-characteristic (LROC) analysis was applied using the
channelized nonprewhitened observer. The observer was first
used to optimize the number of iterations and smoothing filter
for each case that maximized lesion-detection performance for
these data; this was done to ensure that fair comparisons were
made with each test case operating near its optimal perfor-
mance. The probability of correct localization and the area un-
der the LROC curve were then analyzed as functions of the
number of subsets to characterize the effect of OSEM on le-
sion-detection performance. Results: Compared with the base-
line MLEM algorithm, lesion-detection performance with OSEM
declined as the number of subsets increased. The decline was
moderate out to about 12–14 subsets and then became pro-
gressively steeper as the number of subsets increased. Compar-
ing TOF with non-TOF results, the magnitude of the performance
drop was larger for TOF reconstructions. Conclusion: PET le-
sion-detection performance is degraded when OSEM is used
with a large number of subsets. This loss of image quality can
be controlled using a moderate number of subsets (e.g., 12–14
or fewer), retaining a large degree of acceleration while maintain-
ing high image quality. The use of more aggressive subsetting
can result in image quality degradations that offset the benefits of
using TOF or longer scan times.
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Iterative reconstruction algorithms that model Poisson
statistics have become the standard for routine clinical PET
imaging. Maximum-likelihood expectation maximization
(MLEM) is the foundational algorithm; however, it is com-
putationally expensive and requires many iterations to reach
a suitable image. This problem is exacerbated by the emer-
gence of time-of-flight (TOF) imaging, where the compu-
tational cost per iteration can be an order of magnitude
slower than non-TOF (1). Block-iterative algorithms such
as ordered-subsets expectation maximization (OSEM) are
widely used to accelerate iterative image reconstruction (2–
8). Here, the projection data are divided into subsets that
are operated on sequentially during each OSEM iteration.
The number of subsets provides the approximate accelera-
tion factor—one iteration of OSEM with N subsets provides
an image roughly similar to that from N iterations of MLEM
(4–6). However, there is a tradeoff between the number of
subsets and image quality. When the number of subsets is
large, the size of each subset is small and each contains less
tomographic and statistical information, potentially result-
ing in enhanced noise structures and other subset-related
artifacts in the final image (4).

When OSEM is used in the clinic, it is important to
understand the tradeoff between increasing the number of
subsets (more acceleration) and image quality degradations
(noise, artifacts). One approach would be to study how spatial
resolution, contrast, and noise are affected by changing the
number of subsets; however, these measures of image fidelity
do not necessarily predict performance for clinical tasks. The
accepted approach for objectively evaluating image quality
in PET is to perform task-based assessments in which the
different images are evaluated in terms of an observer’s
ability to perform a given task, such as detecting a lesion
in the image. This task includes both detecting a lesion that
is actually present (sensitivity) and correctly ruling out noise
blobs that are not lesions (specificity) (9). The objective of
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this work was to evaluate the relationship between the number
of OSEM subsets and image quality in terms of lesion detect-
ability for general oncologic PET imaging with 18F-FDG.
Our group has established techniques for evaluating PET

lesion-detection performance using specially designed phan-
tom experiments (10–13), and these data and methodolo-
gies have been combined in a resource called the Utah PET
Lesion Detection Database Resource (14). The resource con-
sists of experimental data and routines for performing lo-
calization receiver-operating-characteristic (LROC) analysis
(15–17) with the channelized nonprewhitened (CNPW) nu-
meric observer (18). Model observers such as the CNPW
have been shown to correlate with human observers for sim-
ple lesion-detection tasks (10,11,18–24), and they offer the
ability to quickly and repeatedly review large numbers of
images. These data and LROC methods have previously been
used to evaluate PET lesion-detection performance when
modeling the point spread function (10), using TOF data
(11), and reducing scan times (13).
In this work, experimental data from the Utah PET Lesion

Detection Database were reconstructed with the MLEM
algorithm (i.e., 1 subset) as a baseline and with OSEM using
11 different numbers of subsets (2–84 subsets). The recon-
structions were repeated both with and without TOF data.
Lesion-detection performance was assessed for each case
using the CNPWobserver with LROC analysis. The follow-
ing sections describe the experimental data, reconstruction
and data processing, LROC study methods, and results. The
effect of increasing the number of OSEM subsets on lesion
detectability is then analyzed, and conclusions based on the
results are drawn.

MATERIALS AND METHODS

Experimental Data for Lesion-Detection Assessment
The lesion-detectability study used experimental data from the

Utah PET Lesion Detection Database (14) for the custom large whole-
body phantom scanned on a Biograph mCT TOF PET/CT scanner
(Siemens Medical Solutions) with timing resolution of 527.5 6 4.9
ps (25). The phantom, shown in Figure 1, had 3 main components:
a 3-dimensional brain phantom; an anthropomorphic thorax phan-
tom containing liver, lungs, and rib cage; and a pelvis with bladder
compartment. The approximate dimensions of the phantom are
43 · 28.0 cm at the widest points, and total length is approximately
83.1 cm. Accounting for the missing mass of the arms and legs,
the phantom models an approximately 92-kg patient. The phantom
also had several custom modifications designed to increase realism
for modeling whole-body oncologic 18F-FDG PET (14).

The experiment consisted of 6 back-to-back whole-body scans
acquired each day over the 4 d of the experiment. Each whole-body
scan acquired list-mode data for 4 min per bed position over 6 bed
positions. Three of the 4 d had 21–23 shell-less 68Ge (half-life,
270.8 d) sources modeling lesions (26) with diameters of 6–16 mm
distributed throughout the phantom lungs, liver, and soft-tissue
compartments (mediastinum, abdomen, pelvis) to model tumors
with focal 18F-FDG uptake. On the final day, no lesions were pre-
sent, providing true-negative images for the observer study. This
multiscan protocol provided numerous images and lesions with
varying count levels and lesion target-to-background ratios. The

overall activity levels for the 6 scans broadly covered the full
range of activity levels representative of sites administering 370–
555 MBq of 18F-FDG with uptake times ranging from 60 to 120 min.

Image Reconstruction and Processing
The raw scan data, including list-mode files, attenuation maps,

scanner calibrations, and scatter and randoms estimates, were loaded
to an offline workstation and reconstructed using manufacturer-
supplied software (Siemens Medical Solutions). The baseline re-
construction algorithm was ordinary Poisson line-of-response MLEM
with spatially variant point-spread function modeling (27), and
each scan was reconstructed both with and without TOF. The re-
constructed image matrix was 168 · 168, with 4.073-mm pixels
and 2.027-mm slice thickness. After reconstructing with MLEM,
the reconstructions were repeated using OSEM with every avail-
able number of subsets. The sinogram data had 168 angles, and the
reconstruction software required that the number of angles per
subset be a multiple of 2, giving the following numbers of subsets:
2, 3, 4, 6, 7, 12, 14, 21, 28, 42, and 84. Thus, 12 non-TOF and 12
TOF reconstructions were performed for each scan: MLEM and
11 versions of OSEM covering 2–84 subsets.

One challenge in comparing different OSEM reconstructions is
that the rate of iterative convergence depends on the number of
subsets, and similarly the noise properties (and hence the best
postreconstruction filter) also depend on the number of subsets and
iterations. To provide a fair comparison, it was important to objectively
select the number of iterations and filter used for each case. The

FIGURE 1. Whole-body phantom, shown on PET/CT scanner
table (top), consists of brain compartment; thorax with liver,
lungs, and rib cage/spine; and pelvis with bladder. It models
patient of approximately 92 kg. Coronal CT (bottom left) and
PET (bottom right) images show main phantom compartments
and structures. Example lesions can also be seen in PET image
in both lungs, mediastinum, and pelvis regions.
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standard approach used with the Utah PET Lesion Detection Data-
base (10–14) is to empirically optimize the number of iterations
and postreconstruction filter for each algorithm that maximizes
lesion-detection performance for that algorithm. As such, each
algorithm was run out to at least 120 MLEM-equivalent iterations
(e.g., 20 iterations for OSEM6), with a minimum of 10 iterations
for each case, and the intermediate images from each iteration
were stored for subsequent processing and analysis. The optimal
number of iterations and smoothing filter were then selected using
preliminary LROC studies.

The true location of each lesion in the phantom was determined
from phantom setup coordinate grids and was confirmed on the CT
scans. As reported previously (13), scans 2–5 were found to pro-
vide the most clinically representative activity and noise levels,
and data from these scans were used for the remainder of the study.
This provided a total of 268 lesion-present test images (21–23
lesions · 4 scans/d · 3 d with lesions present) plus 268 corre-
sponding lesion-absent test images (from the scans without lesions)
to be used for the LROC study for each reconstruction algorithm.

LROC Analysis
Preliminary LROC studies were first used to select the optimal

number of iterations and postreconstruction filter for each algo-
rithm, ensuring that each algorithm was fairly compared at near-
maximum performance. Here, 21 different 3-dimensional gaussian
filters were applied to the images from each iteration, with SD
ranging from 0.0 (no filter) to 2.0 voxels in 0.1-voxel increments.
The area under the LROC curve (ALROC) was computed for each
iteration–filter combination. Figure 2 shows how ALROC changed
as a function of iteration and filter for 2 TOF reconstruction cases
and demonstrates that local changes to iteration and filter have
minimal effects on ALROC. The iteration and filter that maximized
ALROC were identified and selected for each algorithm; these val-
ues are listed in Table 1. These parameters maximized ALROC for
this particular set of experimental data, and they do not necessarily
represent near-optimal or optimal parameters for clinical use. The
topic of optimizing the number of iterations and filters for clinical
use is large and complex and falls outside the scope of this work.

Empiric selection of the best number of iterations and filters
required reading 7,834,176 test images to cover 268 lesion-present
and lesion-absent test cases for each algorithm, iteration, and filter.
It would not have been feasible to read this many images with human
observers; however, the CNPW numeric observer completed this
task within a few days. The CNPW observer computes a numeric

rating, analogous to a human observer’s confidence level, regard-
ing the presence or absence of a lesion at each image location. The
location with the highest rating was selected as the most probable
lesion location for the LROC analysis. Additional details on the
CNPW observer (18,21) and its training and application to our
experimental phantom data (10–13) can be found in the referen-
ces. As in this prior work, a radius of correct localization equal to
2.5 voxels was found to correctly identify hits while minimizing
random localizations and was used throughout this study. Two fig-
ures of merit were used to quantify lesion-detection performance:
the probability of correct localization (PLOC) and ALROC. PLOC is
simply the fraction of lesions correctly localized within the 2.5-
voxel threshold. ALROC plots the correctly localized true-positive
fraction versus the false-positive fraction, computed from the ob-
server rating data and known truth. Higher values for these mea-
sures indicate higher lesion-detection performance.

RESULTS

Example Images

Example images reconstructed for each number of OSEM
subsets are shown in Figure 3. The MLEM image provides
the baseline for comparison and corresponds to OSEM with
1 subset. Increasing the number of subsets resulted in in-
creased noise and subtle shape artifacts in these images,

FIGURE 2. Example analysis results
used for selecting number of iterations
and filter strength for each case studied.
Plot on left (A) shows ALROC vs. subiteration
for MLEM and OSEM14 (where 1
subiteration represents 1 full pass
through data; i.e., 1 iteration MLEM 5 1
subiteration, and 1 iteration OSEM14 5
14 subiterations). Here, data are shown
for filter that maximized ALROC at each
subiteration. Analogous plot on right (B)
shows ALROC vs. filter SD, where each
datum is shown for number of iterations
that maximized ALROC for that filter
strength. These data represent portion of multidimensional sampling used to optimize number of iterations and filter strength for
phantom data used in this work.

TABLE 1
Selected Reconstruction Parameters

Non-TOF TOF

No. of

subsets

No. of

iterations

Filter SD

(voxels)

No. of

iterations

Filter SD

(voxels)

1 120 1.3 72 1.2
2 58 1.3 36 1.2
3 37 1.4 23 1.2
4 24 1.2 21 1.2
6 19 1.4 7 0.9
7 18 1.4 13 1.3

12 10 1.3 5 1.2
14 10 1.5 6 1.1
21 7 1.2 3 0.9
28 7 1.4 3 1.2
42 4 1.2 2 0.8
84 5 1.3 1 0.8
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especially for the highest numbers of subsets. The overall
objective of this work was to evaluate how these changes in
the images affect lesion-detection performance for general
oncologic PET imaging. Consider, for example, the sample
images shown in Figure 4. This case had a true 8-mm lesion
in the left lung and noise blobs of similar size and contrast
in the mediastinum. The use of OSEM with 28 subsets
resulted in lower contrast for the true (lung) lesion as com-
pared with MLEM, coupled with increased contrast of the
mediastinal noise blob. In this example, the CNPW observer
correctly identified the lung lesion (true-positive) on the MLEM
image but falsely identified the mediastinal noise blob
(false-positive) on the OSEM28 image. This example illus-
trates how subset-related artifacts can affect lesion-detec-
tion performance.

Lesion Detectability Versus Number of Subsets

Figure 5 presents the main results of this paper, showing
how PLOC and ALROC changed as functions of the number
of OSEM subsets. Lesion-detection performance declined
overall as the number of subsets increased. The decline was
moderate out to about 12–14 subsets and then became pro-
gressively steeper as the number of subsets increased. When
TOF and non-TOF results were compared, the same trend
in performance was observed, but the magnitude of the per-
formance drop was much larger for TOF. Overall, these re-
sults demonstrate that lesion-detection performance is only
slightly degraded when a moderate number of subsets is used,
suggesting that acceleration factors of as much as approx-
imately 10 times can be safely attained with OSEM. However,
more aggressive subsetting can cause more significant losses
in image quality and adversely affect lesion detectability.

DISCUSSION

When LROC studies are performed, it is important to
provide a context for interpreting the magnitude of differ-
ences in the figures of merit (i.e., in PLOC and ALROC) in
clinically relevant terms. The absolute magnitudes of PLOC
and ALROC are determined largely by the experimental de-
sign. For example, one could include many large, high-
contrast lesions that are easily detected—pushing the values
of PLOC and ALROC close to one for all algorithms studied.
Conversely, one could include many small, low-contrast lesions
in the test dataset, resulting in PLOC and ALROC values

closer to zero. Ideally, the test dataset would exactly model
the clinically encountered distribution, in which case the
absolute magnitude of the results would impart clinical mean-
ing; however, such a distribution is not well understood and
would vary widely by disease state. Furthermore, such a dis-
tribution would include many always-detectable lesions (found
by all test algorithms) as well as many invisible lesions (e.g.,
micrometastases), neither of which would add to the statis-
tical power of the study for differentiating the test algorithms.
The lesion test data used here, as for most lesion-detectability

FIGURE 3. Example reconstructed im-
ages with TOF for each number of OSEM
subsets, showing slice in mediastinum with
10-mm-diameter hot lesion in left lung. Each
image is shown at approximately 56 MLEM-
equivalent iterations. Increasing noise and
subtle shape-related artifacts can be ob-
served in images as number of subsets
increases.

FIGURE 4. Example TOF images for MLEM and OSEM28 with
optimal iteration and filter as determined by this study, dem-
onstrating potential effects on lesion detectability. Focus in left
lung is true 8-mm hot lesion, and foci in mediastinum are noise
artifacts. Horizontal profiles showing relative intensity (arbitrary
units) demonstrate that OSEM28 resulted in loss of contrast for
lung lesion (right black arrow), coupled with increase in contrast
for mediastinal noise blobs (left black arrow), as compared with
MLEM. This example represents case in which observer identified
correct (lung) lesion on MLEM image (i.e., true-positive reading)
but misidentified mediastinal noise blob as lesion on OSEM28
image (i.e., false-positive).
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studies, were designed to provide high statistical power for
differentiating and ranking the test algorithms studied. As
such, the differences in the results should be interpreted within
a meaningful context.
We provide 2 such contexts in this work. First, the impact

of TOF versus non-TOF on PET lesion-detection performance
has previously been evaluated in both phantoms and patients
and is becoming well understood (11,13,28–30). Compar-
ing the TOF versus non-TOF results in Figure 5, one sees
that the TOF reconstruction with 42 subsets provided ap-
proximately the same lesion-detection performance as the
non-TOF reconstruction with MLEM. In essence, the deg-
radation of using 42 subsets balanced and offset the benefit
of using TOF in these data. The degradation from using
28 subsets cost approximately 20% of the benefit of TOF.
Although these results should not be construed as exact
quantifications, they do provide a context for assessing the
significance of the changes observed in the results.
To provide additional context for interpreting the results,

we repeated the MLEM TOF reconstructions and computed
ALROC as a function of scan time. Here, the raw list-mode
PET data files were statistically pruned from 240 s per bed
position to 180, 120, and 90 s per bed position (correspond-
ing to whole-body scan times of 24, 18, 12, and 9 min,
respectively). The technique was the same as that presented
in a previous publication (13). Repeating the LROC analy-
sis for these images, we computed the change in ALROC as
a function of scan time for MLEM. The results are shown in
Figure 6, plotted alongside the results for changing the
number of subsets. Here, using OSEM with 21 subsets was
found to result in the same loss of detectability as found for
MLEM when the scan time was reduced from 240 to ap-
proximately 205 s per bed position. Overall, these data
suggest that reconstructing with OSEM up to about 12–14
subsets has only a moderate effect on lesion-detection per-
formance but that using more subsets can result in more
significant degradations.

CONCLUSION

When OSEM is used for tomographic reconstruction, the
number of subsets provides the approximate acceleration fac-
tor for this algorithm as compared with MLEM. However,
increasing the number of subsets also results in increased

noise and subset-related artifacts in the image. This work
evaluated the effect of changing the number of OSEM sub-
sets on lesion-detection performance for general oncologic
PET imaging. As compared with the baseline MLEM algo-
rithm, lesion-detection performance declined as the number
of OSEM subsets increased. The decline was moderate out
to approximately 12–14 subsets for the data studied here,
beyond which performance dropped more rapidly with the
number of subsets. TOF PET reconstructions showed greater
effect than non-TOF reconstructions. The degree of loss of
lesion detectability with 21 subsets was similar to that ob-
served when the scan time was reduced from 240 to 205 s
per bed position. Similarly, the use of 42 subsets with TOF
data offset the value of TOF, resulting in the same ALROC as
non-TOF reconstructed with MLEM. We conclude that
PET lesion-detection performance is degraded when OSEM

FIGURE 5. Lesion-detection performance,
as measured by PLOC (A) and ALROC (B),
plotted as function of number of OSEM
subsets for both TOF and non-TOF re-
constructions. Performance declined over-
all as number of subsets increased, with
marked drop in performance beyond ap-
proximately 28 subsets. For TOF recon-
structions, performance drop at 42 subsets
effectively canceled benefit of TOF.

FIGURE 6. Comparison of how lesion-detection performance,
as quantified by ALROC, is affected by increasing number of
OSEM subsets or decreasing scan time for TOF reconstruc-
tions. These data provide context for interpreting significance
of changes in ALROC observed in this work. For example, use of
approximately 32 subsets would result in same loss of per-
formance as shortening scan time from 240 to 180 s per bed
position.
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is used with a large number of subsets for both non-TOF
and TOF reconstructions. This loss of image quality can be
controlled by using a moderate number of subsets (e.g., 12–
14 or fewer), retaining a large degree of acceleration while
maintaining high image quality.
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