Case of the Quarter

Artifact in Combined Lung Transmission-Liver Emission Scintiphotos

Marc Wojciechowski
Columbia Hospital, Milwaukee, Wisconsin

Case History

A 67-year-old woman with a history of splenectomy underwent a hemigastrectomy and Bilroth II gastrojejunostomy for upper gastrointestinal bleeding. Postoperatively she developed progressive respiratory distress and high fever. An abdominal abscess was suspected; a combined lung transmission–liver emission scan was order to rule out subphrenic abscess.

The patient arrived in our department with a nasogastric tube in place, although there was no suction being applied. Three millicuries of 99mTc-sulfur colloid was injected iv. Imaging was begun after 15 min using a Nuclear Data Camera with a parallel-hole collimator. The patient was placed supine on a radiolucent cart and an anterior image of the dome of the liver was acquired. A flood source containing $10 \text{ mCi of } ^{99m}$Tc was placed under the patient and a transmission-emission image of the lung and liver was taken. Radioactivity below the left hemidiaphragm was noted [Fig. 1(A)]. The flood source was removed and another image was acquired showing no activity except in the liver [Fig. 1(B)]. The cause of the radioactivity is most likely:

1. Splenosis or accessory spleen.
2. Normal spleen.
3. Contamination of chest wall with 99mTc.
4. Flood source transmission through gastrointestinal gas.
5. Free technetium in stomach mucosa.

Solution and Discussion

It is known that the 140-keV gamma radiation of 99mTc will transmit through stomach or bowel gas to cause an image on a scintigraph (1). The stomach and the splenic flexure of the colon are in the area of the suspect radioactivity, and although a nasogastric tube was in place, it was not under suction. Also, the activity in question disappeared when the flood source was removed. Therefore, the correct answer is 4: flood source transmission through gastrointestinal gas.

Normal spleen activity is precluded by history since a splenectomy has been performed. Splenosis or accessory spleen imaging have been reported in the literature (2), but these, as well as chest wall contamination and free 99mTc in stomach, are emission images not dependent upon flood source placement.

References

For reprints contact: Marc Wojciechowski, Nuclear Medicine Section, Beloit Memorial Hospital, 1969 West Hart Road, Beloit WI 53511.
Artifact in Combined Lung Transmission-Liver Emission Scintiphotos

Marc Wojciechowski

This article and updated information are available at:
http://tech.snmjournals.org/content/4/4/207.citation

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://tech.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNMT can be found at:
http://tech.snmjournals.org/site/subscriptions/online.xhtml