Myocardial SPECT Images for Diagnosis of Pulmonary Hypertension and Right Ventricular Hypertrophy

Reza M. Mazraeshahi1, Jeffrey Striet1, Ryan C. Oeltgen2, and Myron C. Gerson1

1Division of Cardiovascular Diseases, University of Cincinnati, Cincinnati, Ohio; and 2North Memorial Cardiology, Minneapolis, Minnesota

The utility of 99mTc-tetrofosmin myocardial SPECT for assessment of pulmonary hypertension and right ventricular thickness has not been well studied. We hypothesized that a ratio of right ventricular activity to left ventricular activity (RV/LV uptake ratio) from SPECT myocardial perfusion images could identify the presence of increased right ventricular wall thickness and elevated systolic pulmonary artery pressure with or without the use of attenuation correction. \textbf{Methods:} We identified 33 patients with normal findings on stress 99mTc-tetrofosmin left ventricular myocardial perfusion imaging who had a complete 2-dimensional echocardiographic study within 3 wk of the SPECT study. Two \(6 \times 6\) pixel regions of interest were placed in the right and left ventricular free walls of both non-attenuation-corrected and attenuation-corrected SPECT images. We examined the correlation of RV/LV uptake ratio with echocardiographic right ventricular free-wall thickness and with pulmonary artery systolic pressure. \textbf{Results:} RV/LV uptake ratio, measured on non-attenuation-corrected images, correlated significantly with both pulmonary artery systolic pressure \((r = 0.63\) and \(P < 0.001)\) and right ventricular wall thickness \((r = 0.6\) and \(P < 0.001)\). Receiver-operating-characteristic analysis of the use of RV/LV uptake ratio to detect significant pulmonary hypertension showed that the area under the curve was 0.78 (95\% confidence interval, 0.62–0.95). However, no significant correlation of RV/LV uptake ratio with pulmonary artery systolic pressure or right ventricular wall thickness was found on attenuation-corrected images. \textbf{Conclusion:} RV/LV uptake ratio measured on SPECT images can be used to identify patients with high pulmonary artery pressure or right ventricular hypertrophy. \textbf{Key Words:} SPECT; pulmonary hypertension; right ventricular hypertrophy; attenuation correction

DOI: 10.2967/jnmt.110.080200

\\textcopyright 2010 by the Society of Nuclear Medicine, Inc.
MATERIALS AND METHODS

Patient Selection

We identified 33 patients who underwent both 99mTc-tetrofosmin perfusion stress imaging and echocardiography at University Hospital during the period from August 2007 to March 2008. These patients had a complete echocardiographic study (including 2D imaging and Doppler interrogation) within 3 wk of the SPECT study. All patients had normal perfusion scan results, with no evidence of left ventricular ischemia or infarction. Patients with incomplete echocardiographic studies or insufficient image quality for accurate measurement of systolic pulmonary artery pressure and right ventricular thickness were excluded from this study.

SPECT Myocardial Perfusion Imaging

Patients were tested in the fasting state. A single-day rest–stress imaging protocol was used. Patients underwent treadmill exercise testing by a modified Bruce protocol. Patients who could not exercise to target heart rate underwent pharmacologic stress with 0.56 mg/kg intravenous dipyridamole over 4 min or intravenous dobutamine at incremental doses of 5, 10, 20, 30, 40, and 50 μg/kg/min at 3-min intervals. At peak dynamic exercise, peak dobutamine-induced tachycardia, or 4 min after dipyridamole infusion, the patient was injected with 925–1,295 MBq (25–35 mCi) of 99mTc-tetrofosmin. Fifteen to 30 min later, SPECT myocardial perfusion images were acquired on a dual-head γ-camera (E.CAM; Siemens Medical Solutions) equipped with high-resolution collimators. Simultaneous transmission scans were acquired using arrays of 153Gd sources aligned across from the camera detectors (Profile; Siemens Medical Solutions Inc.). Images were reconstructed with and without attenuation correction using dedicated nuclear cardiology software (E.SOFT; Siemens Medical Solutions, Inc.). Emission data were collected with a 15% window centered on a 140-keV photopeak. 153Gd transmission images were acquired with a 20% window around a 100-keV photopeak. Images were acquired over 32 stops for each head, using a circular orbit, at 25 s per stop.

Only stress images were used for measurement of myocardial counts and calculation of RV/LV uptake ratio. From a midventricular tomographic slice, an investigator with no knowledge of the clinical or echocardiographic data placed 6 × 6 pixel regions of interest in the middle of the right ventricular free wall and the middle of the left ventricular lateral wall (Fig. 1). Myocardial counts were determined in each region of interest, and the RV/LV uptake ratio was calculated.

2D Echocardiography

Resting 2D echocardiography was performed according to the standard clinical protocol used in the University Hospital Echocardiography Laboratory. The studies were performed by experienced sonographers and included M-mode (parasternal view) and 2D views from the parasternal, apical, suprasternal, and subcostal windows. Continuous, pulsed-wave, and color Doppler was performed to assess for tricuspid regurgitation and to measure Doppler velocities across the tricuspid valve.

Right ventricular free-wall thickness was measured using either M-mode or 2D imaging at the peak of the R wave at the level of the tricuspid valve chordae tendineae as suggested by the American Society of Echocardiography (7). Pulmonary artery systolic pressure was estimated using the modified Bernoulli equation based on the maximal velocity across the tricuspid valve. The right atrial pressure component of the pulmonary artery pressure estimate was based on the inferior vena cava size and respirophasic status (normal, blunted, or absent), as recommended by the American Society of Echocardiography (8). These measurements were performed by a study investigator trained in the field of echocardiography, who did not know the patients’ scintigraphic and clinical data.

The 2009 American College of Cardiology Foundation/American Heart Association Consensus Document on Pulmonary Hypertension recommends further evaluation for pulmonary hypertension in patients with an estimated right ventricular systolic pressure of greater than 40 mm Hg by echocardiography (9). A cut point of 40 mm Hg or greater was selected as the threshold for abnormality in the present study.

Statistical Analysis

Statistical analysis was performed on a personal computer using SPSS 16.0 (SPSS Inc.). Data for continuous
variables are expressed as mean ± SD. The Pearson correlation coefficient was used to determine the relationship between right ventricular wall thickness, pulmonary artery systolic pressure, and RV/LV count ratio. A Student t test was used to compare the differences between patients with and without pulmonary hypertension. Receiver-operating-characteristic analysis was used to determine the accuracy of the RV/LV uptake ratio for diagnosis of significant pulmonary hypertension. All tests were 2-sided, and a P value of 0.05 or less was considered statistically significant.

RESULTS

A total of 33 subjects (11 men and 22 women) was included in the analysis. The mean patient age was 60 ± 16 y (range, 23–93 y). Six patients (18%) had a history of pulmonary diseases (e.g., chronic obstructive pulmonary disease), and 23 patients (70%) had a history of hypertension (Table 1). Twenty-three patients completed both imaging studies within 1 d (10 patients on the same day and 13 patients within 1 d). Twenty patients underwent pharmacologic stress with intravenous dipyridamole. Ten patients underwent an exercise stress test, and 3 patients had dobutamine stress testing. The imaging findings are summarized in Table 2.

SPECT Images with No Attenuation Correction

There was a significant correlation between RV/LV uptake ratio and both pulmonary artery systolic pressure \((r = 0.63 \text{ and } P < 0.001)\) and right ventricular wall thickness \((r = 0.6 \text{ and } P < 0.001)\) (Figs. 2 and 3). Using an estimated pulmonary artery systolic pressure greater than or equal to 40 mm Hg by echocardiography as significant pulmonary hypertension, 14 patients (42%) had significant elevation of systolic pulmonary pressure and 19 patients (58%) had no significant elevation. There was a significant difference in RV/LV uptake ratio between the 2 groups on non–attenuation-corrected SPECT images. Receiver-operating-characteristic analysis of detection rate for significant pulmonary hypertension (i.e., estimated pulmonary artery systolic BP ≥ 40 mm Hg) showed the area under the curve from the non–attenuation-corrected RV/LV uptake ratios to be 0.78 (95% CI, 0.62–0.95) (Fig. 4). The sensitivities and specificities at various cutoffs of the RV/LV ratio for identification of a pulmonary artery pressure greater than or equal to 40 mm Hg are shown in Table 3.

Attenuation-Corrected SPECT Images

There was no significant correlation between RV/LV uptake ratio and pulmonary artery systolic pressure \((r =

TABLE 1
Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of pulmonary diseases</td>
<td>6 (18%)</td>
</tr>
<tr>
<td>History of hypertension</td>
<td>23 (70%)</td>
</tr>
<tr>
<td>History of diabetes mellitus</td>
<td>8 (24%)</td>
</tr>
<tr>
<td>History of heart failure</td>
<td>13 (39%)</td>
</tr>
</tbody>
</table>

TABLE 2
Imaging Findings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated pulmonary artery systolic pressure (mm Hg)</td>
<td>42 ± 16</td>
<td>20–79</td>
</tr>
<tr>
<td>Right ventricular thickness (mm)</td>
<td>4.9 ± 1.1</td>
<td>2.5–7.3</td>
</tr>
<tr>
<td>Ejection fraction by echocardiography (%)</td>
<td>48 ± 19</td>
<td>10–75</td>
</tr>
<tr>
<td>Ejection fraction by SPECT (%)</td>
<td>55 ± 20</td>
<td>11–84</td>
</tr>
<tr>
<td>RV/LV uptake ratio (non–attenuation-corrected)</td>
<td>0.36 ± 0.1</td>
<td>0.22–0.74</td>
</tr>
<tr>
<td>RV/LV uptake ratio (attenuation-corrected)</td>
<td>0.47 ± 0.1</td>
<td>0.3–0.77</td>
</tr>
</tbody>
</table>

FIGURE 2. Correlation of RV/LV ratio with pulmonary artery (PA) systolic pressure in non-attenuation-corrected images.

FIGURE 3. Correlation of RV/LV ratio with right ventricular wall thickness in non-attenuation-corrected images.

FIGURE 4. Receiver-operating-characteristic analysis of detection rate for significant pulmonary hypertension (i.e., estimated pulmonary artery systolic pressure ≥ 40 mm Hg) showed the area under the curve from the non–attenuation-corrected RV/LV uptake ratios to be 0.78 (95% CI, 0.62–0.95).
0.27, \(P = 0.27 \) or right ventricular wall thickness \((r = 0.25, P = 0.2) \) on attenuation-corrected images (Figs. 5 and 6). There was no statistically significant difference in the RV/LV ratio between patients with a pulmonary artery systolic pressure greater than or equal to 40 mm Hg and those with a pressure less than 40 mm Hg (Table 4).

DISCUSSION

Diagnosis of pulmonary hypertension is often delayed because of nonspecific symptoms that overlap with other conditions, including coronary artery disease. Any non-invasive test that can reliably detect the presence of high pulmonary artery pressure is potentially valuable for diagnostic purposes and for follow-up of patients with pulmonary and cardiac diseases.

The results of this study confirm the ability of quantitative \(^{99m}\text{Tc}-\text{tetrofosmin} \) SPECT analysis to detect pulmonary hypertension. In the present study, an RV/LV ratio of 0.35 on non–attenuation-corrected SPECT images had a sensitivity of 72% and a specificity of 70% for detection of significant elevation of pulmonary artery pressure (i.e., estimated pulmonary artery systolic BP \(\geq 40 \) mm Hg). Differ-
detect pulmonary hypertension and right ventricular hypertrophy.

This is the first study, to our knowledge, that has assessed the effect of attenuation correction on calculating RV/LV ratio and its correlation with pulmonary artery pressure and right ventricular thickness. Although it seemed plausible that the attenuation correction algorithm might treat both the right ventricle and the left ventricle similarly, our results suggest a disproportionate change in right ventricular relative to left ventricular counts in attenuation-corrected images. This disproportion leads to a more prominent right ventricle in attenuation-corrected images and changes in the RV/LV ratio that apparently reduce the accuracy of the ratio for estimating pulmonary artery pressure or right ventricular thickness.

The reason that attenuation-corrected RV/LV count ratios failed to accurately predict echocardiographic right ventricular wall thickness and pulmonary artery systolic pressure is not clear. Quantification of tracer uptake from SPECT images was likely affected by several factors, including scattered radiation, partial-volume errors, and photon attenuation. The resolution of SPECT images (12–16 mm) exceeds the normal right ventricular wall thickness of 5 mm, resulting in a partial-volume artifact. This partial-volume effect makes direct measurement of right ventricular wall thickness unreliable (12). This limitation can best be overcome by assessing right ventricular hypertrophy on the basis of the count density in the ventricular wall. Additionally, the right ventricle has a complex geometry and contraction pattern. It is located at different distances for each projection angle, leading to a different resolution for each projection. These artifacts diminish the accuracy of quantitative measurements. We would also speculate that because right ventricular wall thickness is normally less than left ventricular wall thickness, any statistical noise in the data collected in the transmission window may more adversely affect the accuracy of the count density determination for the lower-count right ventricle than for the higher-count left ventricle.

Attenuation correction validation studies, to our knowledge, have been performed only for the left ventricle (13). On the basis of the results of this study and previous observations, we believe that it is reasonable to use only non–attenuation-corrected images to assess right ventricular hypertrophy and estimate pulmonary artery hypertension.

LIMITATIONS

The limitations of this study are those inherent to retrospective studies of small populations, and larger prospective studies are needed to confirm our findings. In our study, myocardial SPECT and 2D echocardiography were not performed simultaneously. However, most patients completed both imaging studies within 1 d. Additionally, this study was performed without using a gold standard (i.e., right heart catheterization) for determining the pulmonary pressure. However, echocardiography is a pivotal test for screening for pulmonary hypertension, and it is frequently used to estimate pulmonary pressures and right ventricular hypertrophy (9). Additionally, we excluded patients with scintigraphic evidence of coronary disease. The RV/LV ratio cannot be applied to patients with evidence of lateral wall hypoperfusion. The results of this study are based on attenuation correction data obtained from arrays of 153Gd point sources, and the correction was performed using a specific software program (E. SOFT). These results cannot be generalized to other attenuation correction methods.

CONCLUSION

Quantitative analysis of 99mTc-tetrofamin myocardial SPECT images may be useful for detection of pulmonary hypertension and right ventricular hypertrophy in patients with cardiac and pulmonary diseases. On the basis of the present findings, we cannot recommend analysis of right ventricular wall thickness and pulmonary artery pressure from attenuation-corrected images.

ACKNOWLEDGMENT

This work was supported in part by a grant from the John R. Strauss Fund for Research and Education in Cardiac Imaging.

REFERENCES

3. Movahed MR, Hepner A, Lizotte P, Milne N. Flattening of the interventricular septum (D-shaped left ventricle) in addition to high right ventricular tracer

TABLE 4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Significant elevation (estimated PAP ≥ 40 mm Hg)</th>
<th>No significant elevation (estimated PAP < 40 mm Hg)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV/LV uptake ratio (non–attenuation-corrected)</td>
<td>0.43 ± 0.12</td>
<td>0.32 ± 0.05</td>
<td>0.002</td>
</tr>
<tr>
<td>RV/LV uptake ratio (attenuation-corrected)</td>
<td>0.5 ± 0.09</td>
<td>0.45 ± 0.11</td>
<td>0.2</td>
</tr>
</tbody>
</table>

PAP = pulmonary artery pressure.

Myocardial SPECT Images for Diagnosis of Pulmonary Hypertension and Right Ventricular Hypertrophy

Reza M. Mazraeshahi, Jeffrey Striet, Ryan C. Oeltgen and Myron C. Gerson

Published online: November 15, 2010.
Doi: 10.2967/jnmt.110.080200

This article and updated information are available at:
http://tech.snmjournals.org/content/38/4/175

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://tech.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNMT can be found at:
http://tech.snmjournals.org/site/subscriptions/online.xhtml