The field of radiology is continuously changing. The purpose of this study was to identify the effect of technologic advances on nuclear medicine during the past 15 y. Methods: The number of radiopharmaceutical doses dispensed at Mayo Clinic (Rochester, Minnesota) from 1990 through 2004 was tracked. The number of doses was equivalent to the number of scans performed. Results: Since 1990, the number of bone scans decreased by 38%. Brain scans using 99mTc have increased by 166%. The number of cardiac doses dispensed increased 184% from 1990 through 1999 but decreased 3% between 2000 and 2004. The number of lung scans decreased 52% from 1992 through 1999 and increased 66% from 1999 through 2004. The number of kidney scans decreased 67% since 1990. Since its introduction in 1993, the use of 111In-pentetreotide has increased 16-fold. PET data showed a 602% increase in the number of procedures from 2001 through 2004. Conclusion: The number of bone, lung, and kidney scans has decreased because of advances in other imaging modalities. Although the number of cardiac imaging scans increased during most of the study period, the recent rate of growth has declined, possibly because of the availability of alternative procedures such as stress echocardiography. The number of brain and lung scans performed has increased, partially because of the development of new protocols. PET and tumor imaging have shown a substantial increase because of increasing numbers of approved indications and Medicare reimbursement.

Key Words: nuclear pharmacy; radiopharmaceuticals; use trends

DOI: 10.2967/jnmt.106.038992
Bone scan doses represented 30% of radiopharmaceuticals dispensed in 1990, but this percentage decreased to 10% of the total in 2004. 99mTc-Medronate was the dominant bone radiopharmaceutical used during the study period. 99mTc-Oxidronate was used almost exclusively in 1991 and 1992. Since 1990, the total number of bone scans decreased by 38% (Fig. 2). 99mTc-Exametazime was the primary brain perfusion imaging agent from 1990 until 1994, when 99mTc-bicisate received U.S. Food and Drug Administration (FDA) approval for brain perfusion imaging. The number of brain scans performed at Mayo Clinic Rochester increased by 166% between 1990 and 2004 (Fig. 3). These radiopharmaceuticals cross the blood–brain barrier and are used for patients with cerebrovascular disease, epilepsy, and Alzheimer’s disease. In selected situations, physician-directed use of these radiopharmaceuticals has deviated from the indication on the package insert.

The number of dispensed cardiac doses increased by 184% from 1990 until 1999 but decreased slightly (3%) between 2000 and 2004 (Fig. 4). Starting in 1997, more 99mTc-sestamibi studies were performed than 201Tl-thallous chloride studies for myocardial perfusion imaging.

The number of lung scans decreased by 36% between 1990 and 1999 (Fig. 5). In 2004, 6% more 99mTc-macroaggregated albumin doses were dispensed than in 1990, reflecting use of lung ventilation–perfusion scintigraphy in patients with supraventricular arrhythmias who were treated with right ventricular outflow tract ablation. From 1990 to 2004, the number of doses dispensed fluctuated.

The number of kidney scans decreased by 67% between 1990 and 2004 (Fig. 6). Four kidney imaging agents were used during this time: 99mTc-DTPA, 131I-hippuran, 99mTc-meriatide, and 99mTc-DMSA. Renal scintigraphy has been replaced by ultrasonography and MRI for several previously common indications (e.g., assessment of renal artery stenosis). Currently, 99mTc-meriatide and 99mTc-DMSA are the only renal tracers frequently used at our institution.

Another increasingly used radiopharmaceutical is 111In-pentetreotide for neuroendocrine tumors. Our institution has

FIGURE 1. Total number of dispensed radiopharmaceutical doses.

FIGURE 2. Radiopharmaceutical doses dispensed for bone scans.

FIGURE 3. Performance of brain scans, stratified by radiopharmaceutical.

FIGURE 4. Radiopharmaceutical doses dispensed for cardiac scans.
seen a 16-fold increase in the amount of 111In-pentetreotide used since its introduction in 1993 (Fig. 7A). These relatively uncommon tumors are challenging to detect with conventional imaging when they are small; the increase in use likely is because patients are referred to Mayo Clinic Rochester for imaging.

PET imaging with 18F-FDG began as a research protocol at Mayo Clinic Rochester in 1999 with the installation of the first PET scanner. Subsequent early use of 18F-FDG grew exponentially and showed a 602.1% increase in PET procedures from 2001 to 2004 (Fig. 7B). This increase also was facilitated by the later installation of 3 PET/CT scanners.

DISCUSSION

Over the study period, the use of bone scans decreased by 38% (Fig. 2). The largest decrease occurred in 1993. This downward trend corresponded to the discovery of the association between high levels of prostate-specific antigen (PSA) and the increased likelihood of having positive bone scan findings for patients with a new diagnosis of prostate carcinoma. According to Oesterling et al. (1), a radionuclide bone scan is unnecessary for a patient with no skeletal symptoms and a PSA level of less than 10.0 μg/L. In addition, Dotan et al. (2) showed that trigger PSA, PSA velocity, and slope are associated with positive bone scan findings. They further suggested that a highly discriminative nomogram may be used to select patients according to their risk of having positive scan findings. PSA tests are easier and more cost-effective than bone scans for some patients. Currently, our physicians routinely use PSA tests for screening and order bone scans when necessary.

The number of brain scans increased 166% between 1990 and 2004 (Fig. 3) because of their diagnostic use for patients with cerebrovascular disease, epilepsy, or Alzheimer’s disease. 99mTc-Exametazime was the primary agent used for brain imaging until 1994, when 99mTc-bicisate received FDA approval for use in perfusion imaging. 99mTc-Bicisate was the preferred brain imaging agent at our institution because the early formulation of 99mTc-exametazime limits stability after reconstitution. Additionally, activity was higher if the agent could be reconstituted with a cold kit (3). The use of 99mTc-exametazime to evaluate patients with epilepsy has lower localization rates, poorer interobserver agreement, and less concordance with electroencephalogram
99mTc-sestamibi may be adapted easily to pharmacologically the use of 99mTc-bicisate. 99mTc-Exametazime also produces higher uptake in the background extracerebral tissue, possibly because it clears more slowly from the bloodstream. Greater gray–white uptake differentiation is seen with 99mTc-bicisate, thus allowing subtle focal changes in the cortex to be detected more readily (3). When used for imaging of Alzheimer’s disease, 99mTc-bicisate shows greater contrast between affected and unaffected brain structures (4).

The number of radiopharmaceutical doses dispensed for cardiac scans increased sharply (184%) from 1990 through 1999 but decreased slightly (3%) between 2000 and 2004 (Fig. 4). In 1997, more 99mTc-sestamibi doses were dispensed than 201Tl-thallous chloride doses for myocardial perfusion imaging. The use of 99mTc-sestamibi has continued to increase; it has essentially replaced 201Tl-thallous chloride for myocardial perfusion imaging. The superior imaging characteristics of 99mTc-sestamibi have made it the radiopharmaceutical of choice for Mayo Clinic Rochester.

Today, more than 40% of radiopharmaceutical doses dispensed at Mayo Clinic Rochester are used in the 2 nuclear cardiology laboratories. Although the number of myocardial perfusion scans is beginning to plateau, the 99mTc-sestamibi perfusion scan remains an important tool in the diagnosis of coronary artery disease (5). Although the exercise treadmill test is usually the first method used to assess cardiovascular function, the 99mTc-sestamibi scan often is performed if the exercise treadmill test findings are inconclusive or indicate possible ischemic changes. At our institution, the choice of test often depends on the patient’s condition. For example, if the physician is concerned about blood perfusion to the myocardium, a 99mTc-sestamibi scan is the best choice. However, if valve function is the main concern, an echocardiogram is a better option. Studies with 99mTc-sestamibi may be adapted easily to pharmacologically induced stress (e.g., by using dobutamine or adenosine) for patients who are unable to exercise. Stress echocardiography is limited to the use of dobutamine pharmacologic stress when exercise is not feasible.

The slight decrease in the number of 99mTc-sestamibi perfusion scans performed in recent years is attributable to the increased use of stress echocardiography for patients with a clinical suspicion of coronary artery disease. Although cardiac PET has been introduced to our laboratory, its use remains limited.

The number of lung scans performed decreased by 52% between 1992 and 1999 (Fig. 5). The primary reason for the decline in lung ventilation and perfusion imaging is the development of spiral volumetric CT for detection of pulmonary embolism. According to van Rossum et al. (6), spiral volumetric CT for pulmonary embolism has a sensitivity of 95% and a specificity of 97%; the positive and negative predictive values are 97% and 97%, respectively. Additionally, breathing artifacts are problematic in nuclear lung ventilation and perfusion imaging studies but do not occur with CT (7). However, a steady increase (66%) in the number of lung scans occurred between 1999 and 2004 (Fig. 5). This increase was due to the use of a protocol that evaluates the effect of pulmonary vein ablation therapy on surrounding lung tissue. Right ventricular outflow tract ablation therapy is used for patients with supraventricular arrhythmias or atrial arrhythmia. A lung ventilation and perfusion scan is performed before ablation and again 3–6 mo after ablation.

The use of kidney scans has decreased by 67% since 1990 (Fig. 6). Four kidney imaging agents were used during that time: 99mTc-DTPA, 111In-hippuran, 99mTc-mertiatide, and 99mTc-DMSA. In 1990, 99mTc-DTPA and 111In-hippuran were the kidney imaging agents used most frequently at Mayo Clinic Rochester. 99mTc-DTPA is removed from the kidneys by glomerular filtration and requires only a small dose because the process is slow. 111In-Hippuran is cleared from the kidneys mostly by tubular secretion but has poor imaging characteristics. These agents were replaced by 99mTc-mertiatide. 99mTc-Mertiatide leaves the kidneys by tubular secretion, yielding superior imaging characteristics for determining kidney function. For imaging the size, shape, and position of the kidneys, 99mTc-DMSA is preferred because it accumulates in the kidneys (8).

The decreased use of renal scanning is due to advances in other imaging modalities. The diagnostic standard for determining renal artery stenosis is renal angiography, but this procedure is invasive and expensive. Duplex ultrasonography and magnetic resonance angiography are replacing captopril renography (9). One study suggested that duplex ultrasonography and captopril renography have high specificity and negative predictive value for detecting renal artery stenosis but also indicated that duplex ultrasonography is easier to perform and is more cost effective (10). Similarly, another study showed that duplex ultrasonography is widely available and provides anatomic and functional information (11). Duplex Doppler ultrasonography for renal artery stenosis greater than 50% has a sensitivity of 97% and specificity of 98% (12). Magnetic resonance angiography may provide more anatomic information than duplex ultrasonography and has a sensitivity of 100% and a specificity of 94% (13).

Another radiopharmaceutical with increasing use is 111In-pentetreotide. Mayo Clinic Rochester had a 16-fold increase in the amount of 111In-pentetreotide dispensed since its introduction in 1993 (Fig. 7A). The initial increase occurred after U.S. FDA approval was obtained in 1994. The use of 111In-pentetreotide continued to rise as the cost decreased and availability increased. Another contributing factor has been the use of SPECT and CT. The merging of these 2 modalities provides physicians with valuable information that aids in patient diagnosis and care.

The use of PET at Mayo Clinic Rochester began as a research protocol in 1999. In 1997, the FDA Modernization and Accountability Act was issued to help regulate PET drugs, which were already being produced and used in academic institutions and hospitals (14). Since 1999, the number of...
scans performed has continued to increase, particularly in 2001, when use of \(^{18}\)F-FDG for the evaluation of certain tumors was approved for Medicare reimbursement. Our institution performed 3 clinical scans in 2000 and 76 in 2001. The increase in the number of PET procedures between 2001 and 2004 was 602\% (Fig. 7B). This increase was attributable directly to the FDA decision to expand Medicare coverage of PET scans to include the diagnosis, staging, and restaging of non–small cell lung cancer, esophageal cancer, colorectal cancer, lymphoma, melanoma, and head and neck cancers; evaluation of myocardial viability after an inconclusive SPECT scan; and presurgical evaluation of refractory seizures (14). As the number of indications approved for Medicare reimbursement increased, the number of PET scans performed at Mayo Clinic Rochester also increased, causing a marked change in our nuclear medicine department. Initially, the department had only 1 PET scanner, but 3 more have been acquired since then (2 are PET/CT scanners). Advances in PET scanner technology and the introduction of PET/CT have been contributing factors in the growth of PET for patient care. Although Mayo Clinic Rochester uses other PET radiopharmaceuticals, only \(^{18}\)F-FDG use was considered for this study.

CONCLUSION

We expect the use of PET and molecular imaging to continue to grow. Nuclear medicine will change and grow as new test procedures are developed for other imaging modalities and as our own technology improves. Although the numbers of some procedures have decreased, the annual number of nuclear medicine doses dispensed at Mayo Clinic Rochester has increased slightly during the study period. Many current procedures use SPECT and PET to acquire high-quality images. On the basis of changes that occurred during the past 15 y, we expect to incorporate more molecular imaging techniques in the future.

ACKNOWLEDGMENTS

Editing, proofreading, and reference verification were provided by the Section of Scientific Publications, Mayo Clinic. This study was presented at the Society of Nuclear Medicine Annual Meeting, San Diego, California, June 3–7, 2006.

REFERENCES

Trends of Radiopharmaceutical Use at Mayo Clinic Rochester

Ashley A. Mroczenski, Stephanie M. Berent, Alice A. Hall, Joseph C. Hung, Thomas J. Herold and Brian P. Mullan

Published online: August 16, 2007.
Doi: 10.2967/jnmt.106.038992

This article and updated information are available at:
http://tech.snmjournals.org/content/35/3/154

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://tech.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNMT can be found at:
http://tech.snmjournals.org/site/subscriptions/online.xhtml