Technical Factors in Labeling Test Meals to Determine Gastric Emptying Rate

Wilhelm Mistiaen, Robrecht Van Hee and Pierre Blockx

Department of Surgical Research, University of Antwerp, Wilrijk; Department of General Surgery, Stuivenberg General Hospital, Antwerpen; and Department of Nuclear Medicine, University Hospital of Antwerp, Edegem, Belgium

Objective: This study investigates the behavior of two different radionuclide labels for liquid test meals and the stability of radionuclide labeling of solid meals.

Methods: Technetium-99m DTPA and 99mTc colloid were compared as labels for liquid test meals in an in vivo investigation of gastric emptying rate. Half emptying time and retention percentages were used as parameters. Stability of solid test meals labeling using 99mTc colloid on liver paté was determined in vitro. After incubation in gastric acid, samples of the labeled solid meals were incubated in bile with pancreatic juice. After separation, activity of 99mTc was determined in the solid phase and in the supernatant. Technetium-99m activity was also measured in plasma during gastric emptying measurements for solids in healthy volunteers.

Results: Liquid gastric emptying was faster if DTPA was used. Colloid remained in the stomach longer. There was little dissociation of 99mTc from the solid test meal into gastric acid and into bile with pancreatic juice. Activity levels of 99mTc in plasma remained low throughout the emptying study.

Conclusion: We prefer DTPA as the label for gastric emptying study of liquid meals. We suspect that colloid adheres to the gastric wall and falsifies the results. The current labeling of solid test meals is stable in gastric and duodenal environments. Adsorption of 99mTc into plasma remains very limited. Subsequent resecretion of 99mTc in whatever form into gastric juice is excluded.

Key Words: gastric emptying rate; labeling stability; technetium-99m DTPA; technetium-99m colloid

Although radionuclide studies of gastric emptying rate (GER) are easy to perform, several basic elements are critical for the accuracy of these studies. Most of all the radionuclide labeling of the test meal must be stable throughout the duration of the procedure. The radionuclide must remain attached to the phase it is supposed to represent. This is true for both solid and liquid test meals.

The most frequently used and recommended markers for liquid test meals are radiolabeled DTPA and colloid (1). Since DTPA is soluble in water, one can expect a different behavior compared to colloid. Colloid particles are much larger and they could match with the size of the foveolae of the gastric mucosa. This could cause a coating effect, and hence misrepresent the gastric handling of the liquid meal. In this study, differences in results using both types of labels were investigated.

Stability of labeling of solid test meals in gastric acid has been studied extensively in vitro (2–4). Hepatic intracellular, liver surface as well as liver paté labeling have been compared. Intracellular labeling is very stable, but live chickens are difficult to handle in a nuclear medicine department. Surface labeling of liver chunks does not provide adequate stability of the label. Liver paté is easy to label and the labeling procedure yields high stability in gastric acid.

Nevertheless, stability in the duodenal environment, in which bile and pancreatic enzymes are present, also needs investigation. Possible breakdown of the labeling and subsequent absorption into plasma of the label has not been excluded yet. This could be followed by resecretion of 99mTc by the gastric mucosa. If this secretion occurs in considerable amounts, GER could be misrepresented by such increased intragastric activity. Therefore, additional experiments were performed to verify and extend the already known guidelines about labeling solid test meals.

MATERIALS AND METHODS

Stability tests for liquid meals were performed in vivo. Six healthy individuals were investigated. The test meal consisted of 100 ml plain tap water labeled with 1 mCi 99mTc DTPA. Acquisition was performed in postero-anterior directions.

Intragastric activity was measured in a region of interest and plotted against time (5). Half-emptying time and retention percentages at 2, 5, 10 and 20 min were determined. The measurement was repeated within one week using 99mTc stannous colloid as the marker. Statistical analysis, using Wilcoxon’s rank sum test for paired data was performed.
Stability tests for solid meals are performed in vitro. The labeling of liver paté with 99mTc stannous colloid is consolidated by frying (6, 7). It was then mixed thoroughly with fresh unlabeled paté. Four 1-g samples of this mixture were incubated in 10 ml fresh canine gastric acid at 37°C and pH2 for 2 hr. Stirring occurred every 15 min in order to mimic gastric motor activity. After separation from gastric acid, the solid phase was incubated in a 10-ml mixture of fresh canine bile and pancreas juice from 1 hr up to 4 hr, after which solid and liquid phase were separated again. Activity of 99mTc was measured separately in gastric acid, bile with pancreas juice and the solid phase using a gamma counter. Correction was performed for decay of 99mTc. The sum of all activity, as well as the percentage of activity in both liquids and solid phase, was calculated.

A complementary test was performed in vivo. During the performance of a gastric emptying test for solids (6) in three healthy volunteers, a 2-ml blood sample was taken every hour after ingestion of the test meal, up to 4 hr. Activity of 99mTc was determined in every sample using a gamma counter. These results, expressed in counts per minute (CPM) were converted into mCi after correction for decay:

\[1 \text{ Ci} = 37 \times 10^9 \text{ Bq} \text{ disintegrations per sec (DPS)} \]
\[1 \text{ Ci} = 2.22 \times 10^{12} \text{ disintegrations per min (DPM)} \]

In the gammacounter, the counting efficiency was 75%. In this case:

\[1 \text{ Ci} = 1.655 \times 10^{12} \text{ counts per min (CPM)} \]

Therefore:

\[1 \text{ CPM} = 0.610 \times 10^{-12} \text{ Ci.} \]

The activity of 99mTc in the whole-blood compartment was calculated and expressed as the percentage of the administered dose, which was 1 mCi. The theoretical volume of the blood compartment was calculated using the height and weight of the volunteer. As a control, a 10-ml sample, containing 1 mCi 99mTc was diluted one million times. The activity of the diluted sample was measured in the same gamma counter.

RESULTS

Table 1 shows that GER for liquids was slower when colloid was used as radiopharmaceutical. The increase of median half emptying time is 11 min. Retention percentages are increased in all cases. After 2 min, the median increase is 13%; after 20 min, this increase rises to 27%. In two cases, T1/2 cannot be determined since the colloid curve flattens after a few minutes and remains well above 50% retention. Statistical analysis shows that these differences are significant (p is lower than 0.05 in all instances). Even in this small population, the differences are of such magnitude that they can be considered clinically important.

Table 2 shows that almost none of the radionuclide dissociates from the solid phase. The highest level of activity in gastric acid remains below 1%. Furthermore, the labeling of liver paté with 99mTc stannous colloid remains quite stable in fresh bile with pancreatic juice. Dissociation of 99mTc from solid into liquid does not exceed 5% in any case.

Table 3 shows that the highest count rate measured in a blood sample is 1239 CPM. Converting this result into Ci yields 743 \times 10^{-12} Ci per 2 ml of blood. In a calculated blood volume of 5600 ml, 2 \times 10^{-6} mCi of 99mTc is detectable. This result corresponds with 0.2% of the total administered dose of 99mTc, which is 1 mCi or 1000 \times 10^{-6} Ci. Dilution of a 10-ml sample containing 1 mCi 99mTc one million times yields 3329 CPM, which is of the same magnitude as 1239 CPM. This confirms the observation that only minimal amounts of 99mTc are adsorbed into plasma.

DISCUSSION

It is obvious from current results that the choice of radiopharmaceutical could influence the measurement of GER for liquid test meals. Half-emptying time as well as retention percentages are increased if colloid is used. This increment is statistically significant.

Although the studied group is relatively small, individual differences between results obtained with colloid and DTPA are of such magnitude that they are considered to be important. This observation is explained by the different behavior of the used radiopharmaceutical: DTPA is a small, entirely soluble molecule which is supposed to follow the test meal completely. This is substantiated by the fact that GER, using DTPA, is faster. In contrast, colloid particles are much larger. If their size matchs those of the gastric foveolae, the current observation is explained by a coating phenomenon. Similar observations have been made earlier in dogs where GER for solid meals was measured using resins as carriers for radionuclide labels. The size of particles was held responsible for a coating, and hence a decrease of gastric emptying rate (8). Coating of colloid particles on the gastric wall explains an observed retention of activity of 99mTc in the stomach although
the test meal has already been evacuated for a large part. GER can be greatly misrepresented. It is therefore of great importance to select properly a radiopharmaceutical to obtain accurate GER studies.

Systemic adsorption of \(^{99m}\text{Tc}\) during gastric emptying studies using liquids labeled with \(^{99m}\text{Tc}\) DTPA does not seem to pose problems. Radionuclide activity could only be detected in small amounts in plasma and tissues, including gastric mucosa, shortly after a GER study (9). The DTPA curve more closely fits an exponential curve, which is supposed to represent emptying for liquid meals. For all these reasons, DTPA is preferred for future GER studies for liquid test meals.

Current results, as well as data in the literature, strongly indicate that labeling of solid test meals with \(^{99m}\text{Tc}\) colloid on liver paté is efficient and stable (2-4). This can be explained by entrapment of the colloid particles into liver paté by frying. We believe that emptying properties of labeled paté are not altered after frying since the caloric content does not change. Furthermore, we have minimized physical changes by thorough fragmentation and mixing of the fried paté with fresh paté. We obtained an almost homogeneous solid phase with small particle size, and a similar emptying rate (10). Chewing also decreases the size of ingested particles. The stomach allows only small particles to pass the pylorus (11).

The current results also indicate that this type of labeling is stable in the duodenal environment. This environment contains bile and pancreas enzymes, which have their lytic activity. This labeling procedure prevents dissociation of \(^{99m}\text{Tc}\) into the liquid phase and, hence, possible absorption of significant amounts of radionuclide into plasma. Resecretion by the gastric mucosa of \(^{99m}\text{Tc}\), therefore, can be considered to be negligible. We do not expect a misrepresentation of GER caused by such phenomenon. This is confirmed by the observation that an increase of intragastric activity during the course of the study, as a result of suspected resecretion of \(^{99m}\text{Tc}\), has never occurred in our own series (6,7,12).

We conclude that stannous colloid is an excellent choice as a radiopharmaceutical for solid meals, provided it is adequately entrapped in a carrier, such as liver paté, by frying. It has a reasonable preparation time and avoids handling live chickens (13).

TABLE 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>Activity in solid (CPM)</th>
<th>Activity in gastric acid (CPM)</th>
<th>Activity in bile + P.J. (CPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>586,808</td>
<td>3687</td>
<td>24,247</td>
</tr>
<tr>
<td>2</td>
<td>527,937</td>
<td>3268</td>
<td>24,358</td>
</tr>
<tr>
<td>3</td>
<td>604,283</td>
<td>1377</td>
<td>25,709</td>
</tr>
<tr>
<td>4</td>
<td>678,627</td>
<td>1543</td>
<td>35,337</td>
</tr>
</tbody>
</table>

TABLE 3

<table>
<thead>
<tr>
<th>Time after ingestion</th>
<th>Volunteer 1 CPM</th>
<th>Volunteer 2 CPM</th>
<th>Volunteer 3 CPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 hr</td>
<td>263</td>
<td>630</td>
<td>147</td>
</tr>
<tr>
<td>2 hr</td>
<td>207</td>
<td>631</td>
<td>253</td>
</tr>
<tr>
<td>3 hr</td>
<td>311</td>
<td>1060</td>
<td>292</td>
</tr>
<tr>
<td>4 hr</td>
<td>224</td>
<td>1239</td>
<td>147</td>
</tr>
</tbody>
</table>

REFERENCES

Technical Factors in Labeling Test Meals to Determine Gastric Emptying Rate

Wilhelm Mistiaen, Robrecht Van Hee and Pierre Blockx

This article and updated information are available at:
http://tech.snmjournals.org/content/24/3/227

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://tech.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNMT can be found at:
http://tech.snmjournals.org/site/subscriptions/online.xhtml