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This article is the second part of a continuing education series
reviewing basic statistics that nuclear medicine and molecular
imaging technologists should understand. In this article, the
statistics for evaluating interpretation accuracy, significance, and
variance are discussed. Throughout the article, actual statistics
are pulled from the published literature. We begin by explaining
2 methods for quantifying interpretive accuracy: interreader and
intrareader reliability. Agreement among readers can be expressed
simply as a percentage. However, the Cohen κ-statistic is a more
robust measure of agreement that accounts for chance. The
higher the κ-statistic is, the higher is the agreement between read-
ers. When 3 or more readers are being compared, the Fleiss
κ-statistic is used. Significance testing determines whether the
difference between 2 conditions or interventions is meaningful.
Statistical significance is usually expressed using a number called
a probability (P) value. Calculation of P value is beyond the scope
of this review. However, knowing how to interpret P values is
important for understanding the scientific literature. Generally, a
P value of less than 0.05 is considered significant and indicates
that the results of the experiment are due to more than just
chance. Variance, standard deviation (SD), confidence interval,
and standard error (SE) explain the dispersion of data around a
mean of a sample drawn from a population. SD is commonly
reported in the literature. A small SD indicates that there is not
much variation in the sample data. Many biologic measurements
fall into what is referred to as a normal distribution taking the
shape of a bell curve. In a normal distribution, 68% of the data
will fall within 1 SD, 95% will fall within 2 SDs, and 99.7% will fall
within 3 SDs. Confidence interval defines the range of possible
values within which the population parameter is likely to lie and
gives an idea of the precision of the statistic being measured. A
wide confidence interval indicates that if the experiment were re-
peated multiple times on other samples, the measured statistic
would lie within a wide range of possibilities. The confidence in-
terval relies on the SE.
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In this 2-part continuing education series, part 1 reviewed
the statistics important in describing the accuracy of a di-
agnostic procedure—in other words, expressing how well a
test distinguishes between 2 conditions, such as whether
disease is present or disease is absent. The ability of a di-
agnostic test to discriminate is quantified by measures of
diagnostic accuracy including sensitivity, specificity, accu-
racy, positive predictive value, negative predictive value,
pretest probability, and posttest probability.

This second part of the series will review several additional
statistical concepts with which molecular technologists should
be familiar. First, accuracy of interpretation will be discussed.
Interpretive accuracy is based on the level of consistency or
agreement between observers: interreader reliability and intra-
reader reliability. In addition, hypothesis testing and signifi-
cance will be briefly discussed. Significance testing determines
whether differences between 2 tests are meaningful or are due
to chance. Finally, some less fascinating but crucial statistics
will be described, including variance, standard deviation (SD),
confidence interval, and standard error (SE).

Examples from the nuclear medicine and molecular imaging
literature are used to illustrate each statistical concept. It is
hoped that the statistical concepts will be more easily under-
stood when described in the context of real-world imaging.

ACCURACY OF INTERPRETATION

Interpretation issues must be considered when one is
evaluating a molecular imaging test. How do you know
whether an interpretation is accurate? How do you know
whether the same interpreter would read a scan similarly if
presented with it a second time? Does the test perform with
the same sensitivity and specificity among different readers?
How often do readers agree in their interpretation of the test?
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Masked Interpretation

The best way for physicians to determine interpreter
accuracy is to perform a masked-read experiment. Inter-
preters are considered “masked” when they are provided
with the images alone, without any medical history, de-
scription of clinical symptoms, or other diagnostic testing
information. The results of the masked interpretations are
then compared with the known results.
For example, researchers looked at the sensitivity and

specificity of 18F-florbetapir (Amyvid; Eli Lilly and Co), a
PET amyloid imaging tracer, in the hands of multiple inter-
preters. Five independent and masked nuclear medicine
physicians were asked to interpret 46 scans from patients
who died within 12 mo of the amyloid PET study. The
standard of truth for comparison was pathologic confirma-
tion of amyloid plaque at autopsy, and the dataset included
both positive and negative amyloid confirmations. The sen-
sitivity of the majority reads across 5 readers was 96%, and
specificity was 100%.
In the clinical patient-care setting, interpreters assume that,

using the prescribed interpretation technique and acquiring
images properly, the test performs as well for all interpreters
as it did in the masked-read experiment.
Patient-specific or lesion-specific accuracy is difficult to

measure in clinical practice without biopsy confirmation
and often cannot be measured at all when the scan results
are negative and no additional testing or follow-up is
performed. Nuclear medicine physicians and radiologists
can participate in hospital quality initiatives that systemat-
ically follow a group of patients and analyze outcomes
against imaging results, thus measuring the readers’ own
accuracy of interpretation. This is routinely done in mam-
mography, for example. National mammography standards
require that all radiologists who interpret mammography
must do routine checks of accuracy (1). However, interpre-
tation is more frequently assessed by comparing interpre-
tations between 2 readers or within the same reader.

Interreader and Intrareader Reliability

Agreement among readers is also an important charac-
teristic for a diagnostic test. How would you measure the
level of agreement or disagreement among readers? If a
scan has excellent accuracy with one expert reader but
additional readers disagree about the findings, the test is
less valuable. Interreader reliability is the measurement of
how frequently interpreters agree with one another. The
higher the reliability is, the higher is the agreement among
readers and the more standardized the interpretation is
across users. The lower the reliability is, the lower is the
agreement among readers. Intrareader reliability is the
measure of how consistently one reader interprets the same
scan a second time. Ideally, intrareader reliability should be
high, meaning that an interpreter reads the same scan the
same way every time.
Agreement among a group of readers can be expressed as

a percentage of the total reads. If 100 scans are interpreted

by 2 readers who provide a binary result (e.g., positive or
negative) and they disagree on 15 scans, the interreader
agreement would be 85%. Reader agreement between 2
different tests can be evaluated in the same way. For example,
18F-fluciclovine researchers looked at the agreement between
18F-fluciclovine and 11C-choline PET interpretations in the
same patients by analyzing results from 3 independent read-
ers. Agreement between the 2 tests was 61% for reader 1,
67% for reader 2, and 77% for reader 3. Another way of
stating the result is to say that the average agreement between
the 2 tests among 3 readers was 68% (2). (Other ways of
measuring interpreter performance are median read among
interpreters or the average read result.)

Kappa (κ) Statistic
Reliability between 2 readers or within 1 reader can also

be characterized by a correlation measure called the Cohen
k-statistic. This statistic measures agreement given the bi-
nary option of positive or negative. Considered to be a more
robust measure of agreement than calculation of a simple
percentage, the k-statistic considers the fact that some agree-
ment happens by chance (e.g., 2 readers may be guessing and
happen to guess the same answer at the same time). The
k-statistic ranges from 0 (complete disagreement) to 1 (com-
plete agreement), with a higher value indicating higher agree-
ment and a lower value indicating lower agreement.
Specifically, a k-statistic of less than 0.20 indicates poor
agreement (no more likely to occur than by chance; 0.21–
0.40, fair agreement; 0.41–0.60, moderate agreement; 0.61–
0.80, good agreement; 0.81–0.99, very good agreement; and
1.00, perfect agreement (3).

When 3 or more readers are evaluated, a similar statistic
called the Fleiss k-statistic is used. Like the Cohen k-sta-
tistic, the closer the Fleiss k-statistic is to 1.0, the closer is
the interreader agreement to perfection (4).

A recent example of k-measurement in the PET literature
is a study by Ohira et al. (5) that looked at the interreader and
intrareader reliability of 18F-FDG PET in patients being re-
ferred for evaluation of cardiac sarcoidosis. The authors mea-
sured agreement using 2 strategies: interpretation of uptake
pattern (categories: focal uptake, focal on diffuse uptake, no
uptake, diffuse uptake, or isolated lateral or basal uptake) and
binary interpretation (positive or negative for cardiac sarcoid-
osis). The k-statistic for pattern interpretation was 0.64,
which reflect good agreement between 2 interpreters. The
k-statistic for binary interpretation was 0.85, showing a very
good level of agreement between 2 interpreters. Analysis of
intrareader agreement demonstrated very good agreement for
both interpretation methods (0.94 for pattern interpretation
and 0.92 for binary interpretation). These data help illustrate
the impact of the 2 methods of interpretation on inter- and
intrareader agreement.

SIGNIFICANCE

When 2 tests or interventions are compared, how can we
know whether the data are meaningful? Statistical significance,
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usually represented by a number called the probability (P)
value, is a way of making sure that the experimental result—
the difference between 2 measurements—is not due to just
chance. Calculation of P values is beyond the scope of this
paper, but knowing how to interpret a P value is important
for understanding the scientific literature. A P value that is
less than 0.05 indicates that the results of the experiment
are due to more than just chance. Put another way, the
research hypothesis is that there is a difference between
A and B, and the null hypothesis (generally the opposite
of what you are interested in finding out) is that there is no
difference between A and B. If the P value is less than 0.05,
it means that the null hypothesis is rejected and the mea-
sured difference between A and B is most likely real. A
P value larger than 0.05 means that not enough information
is available to reject the null hypothesis and that, therefore,
the measured difference between A and B could be due to
random chance (6).
Figure 1 demonstrates P values and significance, using

data from a previously published study (7). The investiga-
tors evaluated whether the aroma of hamburgers being
cooked nearby would affect tracer uptake in the stomach
on myocardial perfusion imaging. The bar graph shows that
the count per pixel was higher in women than in men for
both the stomach and the heart, but the P value reveals that
this difference was statistically significant only for the stomach
(background-corrected stomach, P 5 0.018; background-
corrected heart, P 5 0.623). Therefore, the null hypothesis
(i.e., no difference in stomach counts between women and
men) must be rejected.

VARIANCE

To understand variance, SD, confidence intervals, and
SE, imagine an experiment to calculate the average weight
of male patients coming into your department for thyroid
ablation. You collect data on 50 patients. The mean weight
is 175 lb (1 lb 5 0.45 kg), and the range is 100–250 lb. You

could stop there and report the mean and range, but how
reliable is that measurement and how confident are you that
175 lb is a good description of a typical patient in your
sample? Figure 2 demonstrates how the distribution of
weights can be very different although the mean is the
same.

To better characterize your data, the next step is to
calculate the variance—how far from the mean your sample
weights lie. The variance of a sample is the sum of all
squared differences from the mean, divided by the sample
size minus 1.

Variance 5 +ðXi 2 XÞ2=ðn 2 1Þ:

To calculate the variance, the first step is to determine
absolute differences from the mean for each patient. For
the patient who weighed 100 lb, subtract 100 from 170
for a difference of 70 pounds, and 70 squared is 4,900. For
the patient who weighed 250 lb, the difference from the
mean is 170 2 250 lb, or 80 lb, and 80 squared is 6,400.
After adding all the squared differences, divide the total
by the sample size of 50 2 1 to determine the sample
variation from the mean. For illustration’s sake, assume
the sample variance is calculated as 35,839. As a stand-
alone number, this is not useful to the average reader of
statistics; however, this number is used in the determina-
tion of SD.

SD

SD, a commonly cited statistic in the medical literature, is
used to measure the dispersion or variability in the sampling
data. When we calculate the SD of a sample, we are using it
as an estimate of the variability of the population from which
the sample was drawn. A small SD indicates that there is not
much variation in the sample data for this experiment and
that the calculated statistic is a precise characterization of
the sample. A large SD means that the data have a wide
variability.

Mathematically, the SD of a sample equals the square
root of the variance. In our weight experiment from above,
the SD of our sample can be expressed as the square root of
35,839, or 26.8. This means that the sample mean and SD
are 175 6 26.8 lb.

Biologic measurements, such as weight, fall into what is
referred to as a normal distribution. This means that if you
plot the data from an infinite number of samples, the results
will take the form of a standard curve, referred to as a bell
curve because of its shape. The mean of the group will form
the peak of the curve, and all other data will cluster around
that mean in a predictable pattern. In a normal distribution,
95% of the data will fall within 1.96 SDs of the mean
(usually rounded up to 2), and the remaining 5% will be
scattered at the low or high end of the range (Fig. 3). Using
our patient weight example above, we know that 95% of
patients will fall within approximately 2 SDs, or 53.6 lb
(26.7 · 2) above and 53.6 lb below. Therefore, an accurate

FIGURE 1. Demonstration of significant P values. Study eval-
uated tracer uptake in stomach during myocardial perfusion
imaging when hamburgers were cooked nearby (7). Significant
difference (significant P value) between women and men was
found for stomach counts but not heart counts.
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description of a typical patient in the sample is between
116.4 and 223.6 lb. Note that, in this particular example,
describing the population using a range (i.e., 100–250 lb),
although accurate, is not as useful as describing the average
plus the SD. Both statistics are accurate, but one is more
meaningful to the researcher.

Confidence Interval

Confidence interval is another tool to help us to un-
derstand the strength of a statistic. What is the difference
between confidence interval and SD? A confidence interval
defines a range of possible values within which our
population parameter is likely to lie and gives an idea of
the precision of the statistic being measured. Although SD
describes the attributes of the individual data points that go
into the sample statistic, confidence interval describes the
range of results that would occur if the experiment were
repeated with a different sample of the population. A wide
confidence interval indicates that, if the experiment were
repeated multiple times on other samples, the measured
statistic would lie within a wide range of possibilities,
indicating a lack of precision in the measurement. A narrow
confidence interval means that the result is relatively more
precise and that if the experiment were repeated, the range
of likely results would be close to the original calculation.
Confidence interval can be applied to any statistic, such as
mean or k.

SE

Confidence interval relies on calculation of another
metric, SE. SE (denoted as SE or SEM), like SD, is a mea-
surement of variance or dispersion from the mean. Although
SD describes the variation between individuals and the
calculated sample mean, SE is a measurement of un-
certainty in the mean statistic itself. Referring to our patient
weight experiment above, the population of 50 patients is
only a small sample of all patients who undergo thyroid
ablation. The mean and SD of the weight are assumed to
approximate the population as a whole, but if another
hospital repeats the experiment, or if the experiment is
repeated with 50 additional patients, the mean may be a
different number. SE helps us understand how reliable the
mean measurement of the sample is compared with the
mean of the entire population. In other words, SE describes
how much variation there would be in the calculated mean
if the entire experiment were performed repeatedly and an
average calculated every time. The SE is equal to the SD
divided by the square root of the sample size. Using our
patient weight experiment, we could calculate the SE as
26.8 divided by the square root of 50 (7.07), which equals
3.8. SE by itself is not typically an informative statistic and
is rarely cited; however, SE provides an important basis for
group statistics, for example, as part of a calculation of
confidence interval (6,8).

The mathematic definition for 95% confidence interval
is “(mean – 1.96 · SE) to (mean 1 1.96 · SE).” Using our
weight experiment as raw data, with a mean of 175 lb and
an SE of 3.8, the 95% confidence limit for the calculated
mean would be derived as follows:

ð175 2 1:96 · 3:8Þ to ð1751 1:96 · 3:8Þ
ð175 2 7:45Þ to ð1751 7:45Þ
167:5  to  182:5:

In this example, therefore, these confidence limits tell us
that if we repeated our weight experiment 100 times, we
could expect 95 experiments to result in a calculated mean
of between 162.5 and 177.5 lb. Confidence intervals can be
calculated for other percentages, such as 99% confidence or
90% confidence; however, most examples in the medical
literature use a 95% confidence interval.

An example of published confidence intervals can be
seen in the prescribing information for 18F-florbetapir (9).
Interreader reliability was measured, and the resulting

FIGURE 3. Normal bell-shaped distribution of data. Peak of
curve is mean (purple line). One SD below and above mean
(green lines) represents 68% of data, 2 SDs below and above
mean (orange lines) represent 95% of data, and 3 SDs below
and above mean (red lines) represent 99.7% of data.

FIGURE 2. Graphs demonstrating varia-
tion in data for 2 samples although weight
range (100–250 lb) and mean weight (175 lb)
were the same for both populations: bell-
shaped curve (A) and bimodal (2-peak)
distribution (B).
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Fleiss k-statistic was 0.83, with a 95% confidence interval of
0.78–0.88. The k-statistic itself indicates very good agree-
ment, and the confidence interval tell us that there is a 95%
likelihood that repeated experiments will result in a k-statistic
within the range of 0.78–0.88 (good to very good agreement).
If the k-statistic for a hypothetical test were 0.83 but the
confidence interval very wide (e.g., 0.4–0.9), there would
be concern that repeating the experiment could result in a
k-statistic ranging from fair agreement (0.4) to very good
agreement (0.9). In this way, confidence intervals help us to
know how reliable the statistic would be if repeated.
Significance (P value) and confidence interval, although

testing 2 different things, are strongly related. If the calcu-
lated 95% confidence interval for a difference between 2
groups or tests does not include zero, meaning the range does
not extend from a negative value to a positive value (e.g.,
20.60 to 20.1 or 0.02 to 0.30, the hypothesis test will be
significant (e.g., P, 0.05). If the confidence interval includes
zero (e.g., 20.3 to 0.4), then there will not be statistical
significance in the comparison (e.g., P . 0.05). This is why
confidence intervals sometimes contain more clinically rele-
vant information than P values. Presenting a 95% confidence
interval indicates whether the result is statistically significant
at the 5% level, but it also provides important information
about how well the measurement would hold up under re-
peated testing (8).

CONCLUSION

The goal of this continuing education series on basic
statistics was to provide a refresher for nuclear medicine
and molecular imaging technologists. The statistics reviewed
are those that are commonly found in the literature and that

technologists should understand. Part 1 of the series reviewed
statistics used to describe the characteristics of diagnostic
imaging tests: sensitivity, specificity, and predictive value.
Part 2 has discussed statistics used to evaluate interpretation
accuracy, significance, and variance. Throughout the series,
actual statistics were pulled from the published literature in
the hope that the statistical concepts would more easily come
to life. It is possible that a third part may be added to this
series reviewing more complex concepts such as difference
testing, risk, correlation, and survival analysis.
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